TPTP Problem File: GEO431^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO431^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Geometric quantities)
% Problem : Kyoto University, 2007, Science Course, Problem 4
% Version : [Mat16] axioms : Especial.
% English : Let triangle ABC be a triangle inscribed in a circle centered at
% the point O, and let P, Q, and R be the points that internally
% divide the three sides AB, BC, and CA of triangle ABC in a ratio
% of 2:3, respectively. When the circumcenter of triangle PQR is
% at the point O, find what triangle triangle ABC is.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Kyoto-2007-Ri-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6863 (2210 equ; 0 cnn)
% Maximal formula atoms : 22 ( 3 avg)
% Number of connectives : 39634 ( 104 ~; 233 |;1179 &;35992 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4467 ( 371 atm;1203 fun; 957 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1215 (1172 usr; 69 con; 0-9 aty)
% Number of variables : 8063 ( 406 ^;7085 !; 436 ?;8063 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Ukyo Suzuki; Generated: 2014-03-25
% : Answer
% ^ [V_x_dot_0: '2d.Shape'] :
% ( '2d.is-equilateral-triangle/1' @ V_x_dot_0 ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_qustion,conjecture,
( 'find/1' @ '2d.Shape'
@ ^ [V_x: '2d.Shape'] :
? [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_P: '2d.Point',V_Q: '2d.Point',V_R: '2d.Point'] :
( ( V_x
= ( '2d.triangle/3' @ V_A @ V_B @ V_C ) )
& ? [V_O: '2d.Shape'] :
( ( '2d.circle-type/1' @ V_O )
& ( ( '2d.center-of/1' @ V_O )
= '2d.origin/0' )
& ( '2d.is-inscribed-in/2' @ V_O @ ( '2d.triangle/3' @ V_A @ V_B @ V_C ) )
& ( '2d.divide-internally/4' @ V_P @ ( '2d.seg/2' @ V_A @ V_B ) @ 2.0 @ 3.0 )
& ( '2d.divide-internally/4' @ V_Q @ ( '2d.seg/2' @ V_B @ V_C ) @ 2.0 @ 3.0 )
& ( '2d.divide-internally/4' @ V_R @ ( '2d.seg/2' @ V_C @ V_A ) @ 2.0 @ 3.0 )
& ( '2d.is-circumcenter-of/2' @ '2d.origin/0' @ ( '2d.triangle/3' @ V_P @ V_Q @ V_R ) ) ) ) ) ).
%------------------------------------------------------------------------------