TPTP Problem File: GEO429^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO429^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry
% Problem : International Mathematical Olympiad, 2013, Problem 4
% Version : [Mat16] axioms : Especial.
% English : Let ABC be an acute-angled triangle with orthocentre H, and let
% W be a point on the side BC, lying strictly between B and C.
% The points M and N are the feet of the altitudes from B and C,
% respectively. Denote by omega_1 the circumcircle of BWN, and
% let X be the point on omega_1 such that WX is a diameter of
% omega_1. Analogously, denote by omega_2 the circumcircle of CWM,
% and let Y be the point on omega_2 such that WY is a diameter of
% omega_2. Prove that X, Y and H are collinear.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2013-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 7072 (2212 equ; 0 cnn)
% Maximal formula atoms : 31 ( 3 avg)
% Number of connectives : 39650 ( 106 ~; 233 |;1184 &;36000 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4461 ( 371 atm;1203 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1217 (1174 usr; 71 con; 0-9 aty)
% Number of variables : 8066 ( 405 ^;7096 !; 429 ?;8066 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Yiyang Zhan;
% Generated: 2014-10-15
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_H: '2d.Point',V_w1: '2d.Shape',V_w2: '2d.Shape',V_M: '2d.Point',V_N: '2d.Point',V_X: '2d.Point',V_Y: '2d.Point',V_W: '2d.Point'] :
( ( ( '2d.is-acute-triangle/3' @ V_A @ V_B @ V_C )
& ( '2d.is-orthocenter-of/2' @ V_H @ ( '2d.triangle/3' @ V_A @ V_B @ V_C ) )
& ( '2d.on/2' @ V_W @ ( '2d.seg/2' @ V_B @ V_C ) )
& ( V_W != V_B )
& ( V_W != V_C )
& ( V_M
= ( '2d.foot-of-perpendicular-line-from-to/2' @ V_B @ ( '2d.line/2' @ V_A @ V_C ) ) )
& ( V_N
= ( '2d.foot-of-perpendicular-line-from-to/2' @ V_C @ ( '2d.line/2' @ V_A @ V_B ) ) )
& ( '2d.circle-type/1' @ V_w1 )
& ( '2d.is-inscribed-in/2' @ ( '2d.triangle/3' @ V_B @ V_W @ V_N ) @ V_w1 )
& ( '2d.is-diameter-of/2' @ ( '2d.seg/2' @ V_W @ V_X ) @ V_w1 )
& ( '2d.circle-type/1' @ V_w2 )
& ( '2d.is-inscribed-in/2' @ ( '2d.triangle/3' @ V_C @ V_W @ V_M ) @ V_w2 )
& ( '2d.is-diameter-of/2' @ ( '2d.seg/2' @ V_W @ V_Y ) @ V_w2 ) )
=> ( '2d.colinear/3' @ V_X @ V_Y @ V_H ) ) ).
%------------------------------------------------------------------------------