TPTP Problem File: GEO428^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO428^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry
% Problem : International Mathematical Olympiad, 2010, Problem 4
% Version : [Mat16] axioms : Especial.
% English : Let P be a point inside the triangle ABC. The lines AP, BP and
% CP intersect the circumcircle Gamma of triangle ABC again at the
% points K, L and M respectively. The tangent to Gamma at C
% intersects the line AB at S. Suppose that SC = SP. Prove that
% MK = ML.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2010-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 7088 (2213 equ; 0 cnn)
% Maximal formula atoms : 31 ( 3 avg)
% Number of connectives : 39659 ( 107 ~; 233 |;1185 &;36007 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4461 ( 371 atm;1203 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1217 (1174 usr; 71 con; 0-9 aty)
% Number of variables : 8065 ( 405 ^;7095 !; 429 ?;8065 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-10-21
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_P: '2d.Point',V_K: '2d.Point',V_L: '2d.Point',V_M: '2d.Point',V_Ga: '2d.Shape',V_L2: '2d.Shape',V_S: '2d.Point'] :
( ( ( '2d.is-triangle/3' @ V_A @ V_B @ V_C )
& ( '2d.point-inside-of/2' @ V_P @ ( '2d.triangle/3' @ V_A @ V_B @ V_C ) )
& ( '2d.circle-type/1' @ V_Ga )
& ( '2d.is-inscribed-in/2' @ ( '2d.triangle/3' @ V_A @ V_B @ V_C ) @ V_Ga )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_A @ V_P ) @ V_Ga @ V_K )
& ( V_K != V_A )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_B @ V_P ) @ V_Ga @ V_L )
& ( V_L != V_B )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_C @ V_P ) @ V_Ga @ V_M )
& ( V_M != V_C )
& ( '2d.line-type/1' @ V_L2 )
& ( '2d.tangent/3' @ V_Ga @ V_L2 @ V_C )
& ( '2d.intersect/3' @ V_L2 @ ( '2d.line/2' @ V_A @ V_B ) @ V_S )
& ( ( '2d.length-of/1' @ ( '2d.seg/2' @ V_S @ V_C ) )
= ( '2d.length-of/1' @ ( '2d.seg/2' @ V_S @ V_P ) ) ) )
=> ( ( '2d.length-of/1' @ ( '2d.seg/2' @ V_M @ V_K ) )
= ( '2d.length-of/1' @ ( '2d.seg/2' @ V_M @ V_L ) ) ) ) ).
%------------------------------------------------------------------------------