TPTP Problem File: GEO427^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO427^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Elementary geometry)
% Problem : International Mathematical Olympiad, 2010, Problem 2
% Version : [Mat16] axioms : Especial.
% English : Let I be the incentre of triangle ABC and let Gamma be its
% circumcircle. Let the line AI intersect Gamma again at D. Let E
% be a point on the arc BDC and F a point on the side BC such that
% angle(BAF) = angle(CAE) < 1/2 angle(BAC). Finally, let G be the
% midpoint of the segment IF. Prove that the lines DG and EI
% intersect on Gamma.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2010-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 7400 (2212 equ; 0 cnn)
% Maximal formula atoms : 31 ( 3 avg)
% Number of connectives : 39677 ( 105 ~; 233 |;1186 &;36026 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4468 ( 372 atm;1205 fun; 953 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1222 (1179 usr; 76 con; 0-9 aty)
% Number of variables : 8068 ( 405 ^;7095 !; 432 ?;8068 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-10-21
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_I: '2d.Point',V_Ga: '2d.Shape',V_D: '2d.Point',V_E: '2d.Point',V_F: '2d.Point',V_G: '2d.Point',V_BDC: '2d.Shape'] :
( ( ( '2d.is-triangle/3' @ V_A @ V_B @ V_C )
& ( '2d.is-incenter-of/2' @ V_I @ ( '2d.triangle/3' @ V_A @ V_B @ V_C ) )
& ( '2d.circle-type/1' @ V_Ga )
& ( '2d.is-inscribed-in/2' @ ( '2d.triangle/3' @ V_A @ V_B @ V_C ) @ V_Ga )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_A @ V_I ) @ V_Ga @ V_D )
& ( V_D != V_A )
& ( '2d.on/2' @ V_F @ ( '2d.seg/2' @ V_B @ V_C ) )
& ? [V_former: $real,V_later: $real] :
( V_BDC
= ( '2d.arc/4' @ ( '2d.center-of/1' @ V_Ga ) @ ( '2d.radius-of/1' @ V_Ga ) @ V_former @ V_later ) )
& ( '2d.on/2' @ V_D @ V_BDC )
& ( '2d.is-arc-node/2' @ V_B @ V_BDC )
& ( '2d.is-arc-node/2' @ V_C @ V_BDC )
& ( ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_B @ V_A @ V_F ) )
= ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_C @ V_A @ V_E ) ) )
& ( $less @ ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_C @ V_A @ V_E ) ) @ ( $product @ ( $quotient @ 1.0 @ 2.0 ) @ ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_B @ V_A @ V_C ) ) ) )
& ( ( '2d.seg-midpoint-of/1' @ ( '2d.seg/2' @ V_I @ V_F ) )
= V_G ) )
=> ? [V_X: '2d.Point'] :
( ( '2d.intersect/3' @ ( '2d.line/2' @ V_D @ V_G ) @ ( '2d.line/2' @ V_E @ V_I ) @ V_X )
& ( '2d.on/2' @ V_X @ V_Ga ) ) ) ).
%------------------------------------------------------------------------------