TPTP Problem File: GEO426^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO426^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Elementary geometry)
% Problem : International Mathematical Olympiad, 2009, Problem 4
% Version : [Mat16] axioms : Especial.
% English : Let ABC be a triangle with AB = AC. The angle bisectors of
% angle(CAB) and angle(ABC) meet the sides BC and CA at D and E,
% respectively. Let K be the incentre of triangle ADC. Suppose
% that angle(BEK) = 45 Degree. Find all possible values of
% angle(CAB).
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2009-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6965 (2211 equ; 0 cnn)
% Maximal formula atoms : 22 ( 3 avg)
% Number of connectives : 39648 ( 104 ~; 233 |;1182 &;36003 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4464 ( 371 atm;1204 fun; 952 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1219 (1175 usr; 73 con; 0-9 aty)
% Number of variables : 8064 ( 406 ^;7085 !; 437 ?;8064 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Yiyang Zhan;
% Generated: 2014-10-24
% : Answer
% ^ [V_CAB_dot_0: $real] :
% ( ( V_CAB_dot_0
% = ( $quotient @ 'Pi/0' @ 3.0 ) )
% | ( V_CAB_dot_0
% = ( $quotient @ 'Pi/0' @ 2.0 ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_CAB: $real] :
? [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_l: '2d.Shape',V_m: '2d.Shape',V_D: '2d.Point',V_E: '2d.Point',V_K: '2d.Point'] :
( ( '2d.is-triangle/3' @ V_A @ V_B @ V_C )
& ( ( '2d.distance/2' @ V_A @ V_B )
= ( '2d.distance/2' @ V_A @ V_C ) )
& ( '2d.line-type/1' @ V_l )
& ( '2d.line-type/1' @ V_m )
& ( '2d.is-angle-bisector/2' @ V_l @ ( '2d.angle/3' @ V_C @ V_A @ V_B ) )
& ( '2d.is-angle-bisector/2' @ V_m @ ( '2d.angle/3' @ V_A @ V_B @ V_C ) )
& ( '2d.intersect/3' @ V_l @ ( '2d.seg/2' @ V_B @ V_C ) @ V_D )
& ( '2d.intersect/3' @ V_m @ ( '2d.seg/2' @ V_C @ V_A ) @ V_E )
& ( '2d.is-incenter-of/2' @ V_K @ ( '2d.triangle/3' @ V_A @ V_D @ V_C ) )
& ( ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_B @ V_E @ V_K ) )
= ( $product @ 45.0 @ 'Degree/0' ) )
& ( V_CAB
= ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_C @ V_A @ V_B ) ) ) ) ) ).
%------------------------------------------------------------------------------