TPTP Problem File: GEO425^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO425^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Elementary geometry)
% Problem : International Mathematical Olympiad, 2009, Problem 2
% Version : [Mat16] axioms : Especial.
% English : Let ABC be a triangle with circumcentre O. The points P and Q
% are interior points of the sides CA and AB, respectively. Let K,
% L and M be the midpoints of the segments BP, CQ and PQ,
% respectively, and let Gamma be the circle passing through K, L
% and M. Suppose that the line PQ is tangent to the circle Gamma.
% Prove that OP = OQ.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2009-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 7128 (2216 equ; 0 cnn)
% Maximal formula atoms : 32 ( 3 avg)
% Number of connectives : 39649 ( 108 ~; 233 |;1187 &;35994 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4461 ( 371 atm;1203 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1216 (1173 usr; 70 con; 0-9 aty)
% Number of variables : 8065 ( 405 ^;7095 !; 429 ?;8065 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Yiyang Zhan;
% Generated: 2014-10-24
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_O: '2d.Point',V_P: '2d.Point',V_Q: '2d.Point',V_K: '2d.Point',V_L: '2d.Point',V_M: '2d.Point',V_Gamma: '2d.Shape'] :
( ( ( '2d.is-triangle/3' @ V_A @ V_B @ V_C )
& ( '2d.is-circumcenter-of/2' @ V_O @ ( '2d.triangle/3' @ V_A @ V_B @ V_C ) )
& ( '2d.on/2' @ V_P @ ( '2d.seg/2' @ V_C @ V_A ) )
& ( '2d.on/2' @ V_Q @ ( '2d.seg/2' @ V_A @ V_B ) )
& ( V_P != V_C )
& ( V_P != V_A )
& ( V_Q != V_A )
& ( V_Q != V_B )
& ( V_K
= ( '2d.midpoint-of/2' @ V_B @ V_P ) )
& ( V_L
= ( '2d.midpoint-of/2' @ V_C @ V_Q ) )
& ( V_M
= ( '2d.midpoint-of/2' @ V_P @ V_Q ) )
& ( '2d.circle-type/1' @ V_Gamma )
& ( '2d.on/2' @ V_K @ V_Gamma )
& ( '2d.on/2' @ V_L @ V_Gamma )
& ( '2d.on/2' @ V_M @ V_Gamma )
& ( '2d.tangent/2' @ V_Gamma @ ( '2d.line/2' @ V_P @ V_Q ) ) )
=> ( ( '2d.distance/2' @ V_O @ V_P )
= ( '2d.distance/2' @ V_O @ V_Q ) ) ) ).
%------------------------------------------------------------------------------