TPTP Problem File: GEO423^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO423^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Geometric inequalities)
% Problem : International Mathematical Olympiad, 2006, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Let ABC be a triangle with incenter I. A point P in the interior
% of the triangle satisfies angle(PBA) + angle(PCA) = angle(PBC) +
% angle(PCB). Show that AP >= AI, and that equality holds if and
% only if P = I.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2006-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6936 (2209 equ; 0 cnn)
% Maximal formula atoms : 22 ( 3 avg)
% Number of connectives : 39637 ( 104 ~; 233 |;1175 &;35998 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4464 ( 372 atm;1205 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1214 (1171 usr; 68 con; 0-9 aty)
% Number of variables : 8060 ( 405 ^;7090 !; 429 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-10-22
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1,conjecture,
! [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_I: '2d.Point',V_P: '2d.Point'] :
( ( ( '2d.is-triangle/3' @ V_A @ V_B @ V_C )
& ( '2d.is-incenter-of/2' @ V_I @ ( '2d.triangle/3' @ V_A @ V_B @ V_C ) )
& ( '2d.point-inside-of/2' @ V_P @ ( '2d.triangle/3' @ V_A @ V_B @ V_C ) )
& ( ( $sum @ ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_P @ V_B @ V_A ) ) @ ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_P @ V_C @ V_A ) ) )
= ( $sum @ ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_P @ V_B @ V_C ) ) @ ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_P @ V_C @ V_B ) ) ) ) )
=> ( $greatereq @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A @ V_P ) ) @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A @ V_I ) ) ) ) ).
%------------------------------------------------------------------------------