TPTP Problem File: GEO422^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO422^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry
% Problem : International Mathematical Olympiad, 2005, Problem 5
% Version : [Mat16] axioms : Especial.
% English : Let ABCD be a fixed convex quadrilateral with BC = DA and BC not
% parallel with DA. Let two variable points E and F lie of the
% sides BC and DA, respectively and satisfy BE = DF. The lines AC
% and BD meet at P, the lines BD and EF meet at Q, the lines EF
% and AC meet at R. Prove that the circumcircles of the triangles
% PQR, as E and F vary, have a common point other than P.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2005-5.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 7110 (2211 equ; 0 cnn)
% Maximal formula atoms : 31 ( 3 avg)
% Number of connectives : 39661 ( 106 ~; 233 |;1182 &;36012 @)
% (1095 <=>;1033 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4461 ( 371 atm;1203 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1216 (1173 usr; 70 con; 0-9 aty)
% Number of variables : 8066 ( 405 ^;7094 !; 431 ?;8066 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Yiyang Zhan;
% Generated: 2014-11-19
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_D: '2d.Point'] :
( ( ( '2d.is-square/4' @ V_A @ V_B @ V_C @ V_D )
& ( ( '2d.distance/2' @ V_B @ V_C )
= ( '2d.distance/2' @ V_D @ V_A ) )
& ~ ( '2d.parallel/2' @ ( '2d.line/2' @ V_B @ V_C ) @ ( '2d.line/2' @ V_D @ V_A ) ) )
=> ? [V_S: '2d.Point'] :
! [V_E: '2d.Point',V_F: '2d.Point',V_P: '2d.Point',V_Q: '2d.Point',V_R: '2d.Point'] :
( ( ( '2d.on/2' @ V_E @ ( '2d.seg/2' @ V_B @ V_C ) )
& ( '2d.on/2' @ V_F @ ( '2d.seg/2' @ V_D @ V_A ) )
& ( ( '2d.distance/2' @ V_B @ V_E )
= ( '2d.distance/2' @ V_D @ V_F ) )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_A @ V_C ) @ ( '2d.line/2' @ V_B @ V_D ) @ V_P )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_B @ V_D ) @ ( '2d.line/2' @ V_E @ V_F ) @ V_Q )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_E @ V_F ) @ ( '2d.line/2' @ V_A @ V_C ) @ V_R ) )
=> ( ( V_S != V_P )
& ? [V_O: '2d.Shape'] :
( ( '2d.circle-type/1' @ V_O )
& ( '2d.is-inscribed-in/2' @ ( '2d.triangle/3' @ V_P @ V_Q @ V_R ) @ V_O )
& ( '2d.on/2' @ V_S @ V_O ) ) ) ) ) ).
%------------------------------------------------------------------------------