TPTP Problem File: GEO420^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO420^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry
% Problem : International Mathematical Olympiad, 2000, Problem 1
% Version : [Mat16] axioms : Especial.
% English : AB is tangent to the circles CAMN and NMBD. M lies between C and
% D on the line CD, and CD is parallel to AB. The chords NA and CM
% meet at P; the chords NB and MD meet at Q. The rays CA and DB
% meet at E. Prove that PE = QE.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2000-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 7215 (2210 equ; 0 cnn)
% Maximal formula atoms : 38 ( 3 avg)
% Number of connectives : 39692 ( 105 ~; 233 |;1192 &;36035 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 38 ( 8 avg)
% Number arithmetic : 4461 ( 371 atm;1203 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1217 (1174 usr; 71 con; 0-9 aty)
% Number of variables : 8066 ( 405 ^;7096 !; 429 ?;8066 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Munehiro Kobayashi;
% Generated: 2014-11-13
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_Gamma1: '2d.Shape',V_Gamma2: '2d.Shape',V_M: '2d.Point',V_N: '2d.Point',V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_D: '2d.Point',V_E: '2d.Point',V_P: '2d.Point',V_Q: '2d.Point'] :
( ( ( '2d.circle-type/1' @ V_Gamma1 )
& ( '2d.circle-type/1' @ V_Gamma2 )
& ( '2d.on/2' @ V_C @ V_Gamma1 )
& ( '2d.on/2' @ V_A @ V_Gamma1 )
& ( '2d.on/2' @ V_M @ V_Gamma1 )
& ( '2d.on/2' @ V_N @ V_Gamma1 )
& ( '2d.is-square/4' @ V_C @ V_A @ V_M @ V_N )
& ( '2d.on/2' @ V_N @ V_Gamma2 )
& ( '2d.on/2' @ V_M @ V_Gamma2 )
& ( '2d.on/2' @ V_B @ V_Gamma2 )
& ( '2d.on/2' @ V_D @ V_Gamma2 )
& ( '2d.is-square/4' @ V_N @ V_M @ V_B @ V_D )
& ( V_M != V_N )
& ( '2d.tangent/2' @ ( '2d.line/2' @ V_A @ V_B ) @ V_Gamma1 )
& ( '2d.tangent/2' @ ( '2d.line/2' @ V_A @ V_B ) @ V_Gamma2 )
& ( '2d.on/2' @ V_M @ ( '2d.line/2' @ V_C @ V_D ) )
& ( '2d.vec-opp-direction/2' @ ( '2d.vec/2' @ V_C @ V_M ) @ ( '2d.vec/2' @ V_D @ V_M ) )
& ( '2d.parallel/2' @ ( '2d.line/2' @ V_C @ V_D ) @ ( '2d.line/2' @ V_A @ V_B ) )
& ( '2d.on/2' @ V_P @ ( '2d.intersection/2' @ ( '2d.seg/2' @ V_A @ V_N ) @ ( '2d.seg/2' @ V_C @ V_M ) ) )
& ( '2d.on/2' @ V_Q @ ( '2d.intersection/2' @ ( '2d.seg/2' @ V_B @ V_N ) @ ( '2d.seg/2' @ V_M @ V_D ) ) )
& ( '2d.on/2' @ V_E @ ( '2d.intersection/2' @ ( '2d.line/2' @ V_C @ V_A ) @ ( '2d.line/2' @ V_D @ V_B ) ) ) )
=> ( ( '2d.distance/2' @ V_E @ V_P )
= ( '2d.distance/2' @ V_E @ V_Q ) ) ) ).
%------------------------------------------------------------------------------