TPTP Problem File: GEO419^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO419^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Circles)
% Problem : International Mathematical Olympiad, 1999, Problem 5
% Version : [Mat16] axioms : Especial.
% English : Two circles G_1 and G_2 are contained inside the circle G, and
% are tangent to G at the distinct points M and N, respectively.
% G_1 passes through the center of G_2. The line passing through
% the two points of intersection of G_1 and G_2 meets G at A and
% B. The lines MA and MB meet G_1 at C and D, respectively. Prove
% that CD is tangent to G_2.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1999-5.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6804 (2212 equ; 0 cnn)
% Maximal formula atoms : 31 ( 2 avg)
% Number of connectives : 39660 ( 108 ~; 233 |;1189 &;36003 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 35 ( 8 avg)
% Number arithmetic : 4461 ( 371 atm;1203 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1214 (1171 usr; 68 con; 0-9 aty)
% Number of variables : 8066 ( 405 ^;7096 !; 429 ?;8066 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Yiyang Zhan;
% Generated: 2014-12-03
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_G: '2d.Shape',V_G1: '2d.Shape',V_G2: '2d.Shape',V_M: '2d.Point',V_N: '2d.Point',V_P: '2d.Point',V_Q: '2d.Point',V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_D: '2d.Point'] :
( ( ( '2d.circle-type/1' @ V_G )
& ( '2d.circle-type/1' @ V_G1 )
& ( '2d.circle-type/1' @ V_G2 )
& ( '2d.is-inscribed-in/2' @ V_G1 @ V_G )
& ( '2d.is-inscribed-in/2' @ V_G2 @ V_G )
& ( '2d.tangent/3' @ V_G @ V_G1 @ V_M )
& ( '2d.tangent/3' @ V_G @ V_G2 @ V_N )
& ( V_M != V_N )
& ( '2d.on/2' @ ( '2d.center-of/1' @ V_G2 ) @ V_G1 )
& ( '2d.intersect/3' @ V_G1 @ V_G2 @ V_P )
& ( '2d.intersect/3' @ V_G1 @ V_G2 @ V_Q )
& ( V_P != V_Q )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_P @ V_Q ) @ V_G @ V_A )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_P @ V_Q ) @ V_G @ V_B )
& ( V_A != V_B )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_M @ V_A ) @ V_G1 @ V_C )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_M @ V_B ) @ V_G1 @ V_D )
& ( V_C != V_D ) )
=> ( '2d.tangent/2' @ ( '2d.line/2' @ V_C @ V_D ) @ V_G2 ) ) ).
%------------------------------------------------------------------------------