TPTP Problem File: GEO415^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO415^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Triangles)
% Problem : International Mathematical Olympiad, 1993, Problem 2
% Version : [Mat16] axioms : Especial.
% English : Let D be a point inside acute triangle ABC such that angle ADB
% = angle ACB + pi/2 and AC-BD = AD-BC. (a) Calculate the ratio
% AB-CD/ AC-BD. (b) Prove that the tangents at C to the
% circumcircles of triangle ACD and triangle BCD are perpendicular.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1993-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6801 (2211 equ; 0 cnn)
% Maximal formula atoms : 22 ( 2 avg)
% Number of connectives : 39644 ( 104 ~; 233 |;1176 &;36005 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4470 ( 371 atm;1210 fun; 952 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1214 (1171 usr; 68 con; 0-9 aty)
% Number of variables : 8060 ( 406 ^;7085 !; 433 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Yiyang Zhan;
% Generated: 2014-12-10
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_x: $real] :
? [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_D: '2d.Point'] :
( ( '2d.is-acute-triangle/3' @ V_A @ V_B @ V_C )
& ( '2d.point-inside-of/2' @ V_D @ ( '2d.triangle/3' @ V_A @ V_B @ V_C ) )
& ( ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_A @ V_D @ V_B ) )
= ( $sum @ ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_A @ V_C @ V_B ) ) @ ( $quotient @ 'Pi/0' @ 2.0 ) ) )
& ( ( $product @ ( '2d.distance/2' @ V_A @ V_C ) @ ( '2d.distance/2' @ V_B @ V_D ) )
= ( $product @ ( '2d.distance/2' @ V_A @ V_D ) @ ( '2d.distance/2' @ V_B @ V_D ) ) )
& ( V_x
= ( $quotient @ ( $product @ ( '2d.distance/2' @ V_A @ V_B ) @ ( '2d.distance/2' @ V_C @ V_D ) ) @ ( $product @ ( '2d.distance/2' @ V_A @ V_C ) @ ( '2d.distance/2' @ V_B @ V_D ) ) ) ) ) ) ).
%------------------------------------------------------------------------------