TPTP Problem File: GEO413^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO413^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Circles)
% Problem : International Mathematical Olympiad, 1990, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Chords AB and CD of a circle intersect at a point E inside the
% circle. Let M be an interior point of the segment EB. The tangent
% line at E to the circle through D, E, and M intersects the lines
% BC and AC at F and G, respectively. If AM/AB = t, find EG/EF in
% terms of t.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1990-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3486 ( 728 unt;1200 typ; 0 def)
% Number of atoms : 6944 (2213 equ; 0 cnn)
% Maximal formula atoms : 31 ( 3 avg)
% Number of connectives : 39678 ( 107 ~; 233 |;1191 &;36021 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 34 ( 8 avg)
% Number arithmetic : 4464 ( 371 atm;1205 fun; 951 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1216 (1173 usr; 70 con; 0-9 aty)
% Number of variables : 8066 ( 406 ^;7085 !; 439 ?;8066 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Munehiro Kobayashi;
% Generated: 2014-11-13
% : Answer
% ^ [V_ratio_dot_0: $real] :
% ( V_ratio_dot_0
% = ( $quotient @ 't/0' @ ( $difference @ 1.0 @ 't/0' ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('t/0_type',type,
't/0': $real ).
thf(p_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_ratio: $real] :
? [V_c: '2d.Shape',V_c1: '2d.Shape',V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_D: '2d.Point',V_E: '2d.Point',V_F: '2d.Point',V_G: '2d.Point',V_M: '2d.Point'] :
( ( '2d.circle-type/1' @ V_c )
& ( '2d.on/2' @ V_A @ V_c )
& ( '2d.on/2' @ V_B @ V_c )
& ( '2d.on/2' @ V_C @ V_c )
& ( '2d.on/2' @ V_D @ V_c )
& ( ( '2d.seg/2' @ V_A @ V_B )
!= ( '2d.seg/2' @ V_C @ V_D ) )
& ( '2d.intersect/3' @ ( '2d.seg/2' @ V_A @ V_B ) @ ( '2d.seg/2' @ V_C @ V_D ) @ V_E )
& ( '2d.point-inside-of/2' @ V_E @ V_c )
& ( '2d.on/2' @ V_M @ ( '2d.seg/2' @ V_E @ V_F ) )
& ( V_M != V_E )
& ( V_M != V_F )
& ( '2d.circle-type/1' @ V_c1 )
& ( '2d.on/2' @ V_D @ V_c1 )
& ( '2d.on/2' @ V_E @ V_c1 )
& ( '2d.on/2' @ V_M @ V_c1 )
& ( '2d.tangent/3' @ ( '2d.line/2' @ V_F @ V_G ) @ V_c1 @ V_E )
& ( '2d.on/2' @ V_F @ ( '2d.line/2' @ V_B @ V_C ) )
& ( '2d.on/2' @ V_G @ ( '2d.line/2' @ V_A @ V_C ) )
& ( ( $product @ 't/0' @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A @ V_B ) ) )
= ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A @ V_M ) ) )
& ( ( $product @ V_ratio @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_E @ V_F ) ) )
= ( '2d.length-of/1' @ ( '2d.seg/2' @ V_E @ V_G ) ) ) ) ) ).
%------------------------------------------------------------------------------