TPTP Problem File: GEO412^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO412^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Circles and other quadratic curves)
% Problem : International Mathematical Olympiad, 1989, Problem 4
% Version : [Mat16] axioms : Especial.
% English : Let ABCD be a convex quadrilateral such that the sides AB, AD,
% BC satisfy AB = AD + BC. There exists a point P inside the
% quadrilateral at a distance h from the line CD such that AP = h
% + AD and BP = h + BC. Show that: 1/sqrt(h) >= 1/sqrt(AD) +
% 1/sqrt(BC).
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1989-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6955 (2212 equ; 0 cnn)
% Maximal formula atoms : 31 ( 3 avg)
% Number of connectives : 39649 ( 104 ~; 233 |;1177 &;36008 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4473 ( 372 atm;1210 fun; 954 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1213 (1170 usr; 67 con; 0-9 aty)
% Number of variables : 8061 ( 405 ^;7091 !; 429 ?;8061 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Yiyang Zhan;
% Generated: 2014-12-19
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_D: '2d.Point',V_P: '2d.Point',V_h: $real] :
( ( ( '2d.is-square/4' @ V_A @ V_B @ V_C @ V_D )
& ( ( '2d.distance/2' @ V_A @ V_B )
= ( $sum @ ( '2d.distance/2' @ V_A @ V_D ) @ ( '2d.distance/2' @ V_B @ V_C ) ) )
& ( '2d.point-inside-of/2' @ V_P @ ( '2d.square/4' @ V_A @ V_B @ V_C @ V_D ) )
& ( V_h
= ( '2d.point-shape-distance/2' @ V_P @ ( '2d.line/2' @ V_C @ V_D ) ) )
& ( ( '2d.distance/2' @ V_A @ V_P )
= ( $sum @ V_h @ ( '2d.distance/2' @ V_A @ V_D ) ) )
& ( ( '2d.distance/2' @ V_B @ V_P )
= ( $sum @ V_h @ ( '2d.distance/2' @ V_B @ V_C ) ) ) )
=> ( $greatereq @ ( $quotient @ 1.0 @ ( 'sqrt/1' @ V_h ) ) @ ( $sum @ ( $quotient @ 1.0 @ ( 'sqrt/1' @ ( '2d.distance/2' @ V_A @ V_D ) ) ) @ ( $quotient @ 1.0 @ ( 'sqrt/1' @ ( '2d.distance/2' @ V_B @ V_C ) ) ) ) ) ) ).
%------------------------------------------------------------------------------