TPTP Problem File: GEO411^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO411^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Triangles)
% Problem : International Mathematical Olympiad, 1987, Problem 2
% Version : [Mat16] axioms : Especial.
% English : In an acute-angled triangle ABC the interior bisector of the angle
% A intersects BC at L and intersects the circumcircle of ABC again
% at N. From point L perpendiculars are drawn to AB and AC, the feet
% of these perpendiculars being K and M respectively. Prove that the
% quadrilateral AKNM and the triangle ABC have equal areas.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1987-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 7155 (2212 equ; 0 cnn)
% Maximal formula atoms : 31 ( 3 avg)
% Number of connectives : 39644 ( 105 ~; 233 |;1180 &;35999 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4461 ( 371 atm;1203 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1218 (1175 usr; 72 con; 0-9 aty)
% Number of variables : 8063 ( 405 ^;7093 !; 429 ?;8063 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Munehiro Kobayashi;
% Generated: 2014-12-11
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_L: '2d.Point',V_N: '2d.Point',V_K: '2d.Point',V_M: '2d.Point',V_Circle: '2d.Shape'] :
( ( ( '2d.is-acute-triangle/3' @ V_A @ V_B @ V_C )
& ( '2d.is-angle-bisector/2' @ ( '2d.line/2' @ V_A @ V_L ) @ ( '2d.angle/3' @ V_C @ V_A @ V_B ) )
& ( '2d.on/2' @ V_L @ ( '2d.line/2' @ V_B @ V_C ) )
& ( '2d.circle-type/1' @ V_Circle )
& ( '2d.is-inscribed-in/2' @ ( '2d.triangle/3' @ V_A @ V_B @ V_C ) @ V_Circle )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_A @ V_L ) @ V_Circle @ V_N )
& ( V_A != V_N )
& ( V_K
= ( '2d.foot-of-perpendicular-line-from-to/2' @ V_L @ ( '2d.line/2' @ V_A @ V_B ) ) )
& ( V_M
= ( '2d.foot-of-perpendicular-line-from-to/2' @ V_L @ ( '2d.line/2' @ V_A @ V_C ) ) ) )
=> ( ( '2d.area-of/1' @ ( '2d.triangle/3' @ V_A @ V_B @ V_C ) )
= ( '2d.area-of/1' @ ( '2d.square/4' @ V_A @ V_K @ V_N @ V_M ) ) ) ) ).
%------------------------------------------------------------------------------