TPTP Problem File: GEO410^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO410^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Transformational geometry)
% Problem : International Mathematical Olympiad, 1986, Problem 2
% Version : [Mat16] axioms : Especial.
% English : A triangle A_1A_2A_3 and a point P_0 are given in the plane. We
% define A_s = A_{s-3} for all s ge 4. We construct a set of
% points P_1, P_2, P_3, ..., such that P_{k+1} is the image of P_k
% under a rotation with center A_{k+1} through angle 120^o
% clockwise (for k = 0, 1, 2, ...). Prove that if P_{1986} = P_0,
% then the triangle A_1 A_2 A_3 is equilateral.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1986-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6747 (2216 equ; 0 cnn)
% Maximal formula atoms : 21 ( 2 avg)
% Number of connectives : 39670 ( 104 ~; 233 |;1180 &;36024 @)
% (1095 <=>;1034 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4502 ( 373 atm;1217 fun; 974 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2410 (2410 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1214 (1170 usr; 68 con; 0-9 aty)
% Number of variables : 8063 ( 405 ^;7093 !; 429 ?;8063 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-11-18
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_A1: '2d.Point',V_A2: '2d.Point',V_A3: '2d.Point',V_P0: '2d.Point',V_P: $int > '2d.Point',V_A: $int > '2d.Point'] :
( ( ( '2d.is-triangle/3' @ V_A1 @ V_A2 @ V_A3 )
& ( ( V_A @ 1 )
= V_A1 )
& ( ( V_A @ 2 )
= V_A2 )
& ( ( V_A @ 3 )
= V_A3 )
& ! [V_s: $int] :
( ( $greatereq @ V_s @ 4 )
=> ( ( V_A @ V_s )
= ( V_A @ ( $difference @ V_s @ 3 ) ) ) )
& ( ( V_P @ 0 )
= V_P0 )
& ! [V_k: $int] :
( ( $lesseq @ 0 @ V_k )
=> ( ( ( '2d.distance/2' @ ( V_A @ ( $sum @ V_k @ 1 ) ) @ ( V_P @ V_k ) )
= ( '2d.distance/2' @ ( V_A @ ( $sum @ V_k @ 1 ) ) @ ( V_P @ ( $sum @ V_k @ 1 ) ) ) )
& ( ( '2d.mv*/2' @ ( '2d.matrix/4' @ ( $uminus @ ( $quotient @ 1.0 @ 2.0 ) ) @ ( $uminus @ ( $quotient @ ( 'sqrt/1' @ 3.0 ) @ 2.0 ) ) @ ( $quotient @ ( 'sqrt/1' @ 3.0 ) @ 2.0 ) @ ( $uminus @ ( $quotient @ 1.0 @ 2.0 ) ) ) @ ( '2d.vec/2' @ ( V_A @ ( $sum @ V_k @ 1 ) ) @ ( V_P @ V_k ) ) )
= ( '2d.vec/2' @ ( V_A @ ( $sum @ V_k @ 1 ) ) @ ( V_P @ ( $sum @ V_k @ 1 ) ) ) ) ) )
& ( ( V_P @ 1986 )
= ( V_P @ 0 ) ) )
=> ( '2d.is-equilateral-triangle/3' @ V_A1 @ V_A2 @ V_A3 ) ) ).
%------------------------------------------------------------------------------