TPTP Problem File: GEO409^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO409^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Transformational geometry)
% Problem : International Mathematical Olympiad, 1985, Problem 1
% Version : [Mat16] axioms : Especial.
% English : A circle has center on the side AB of the cyclic quadrilateral
% ABCD. The other three sides are tangent to the circle. Prove
% that AD + BC = AB.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1985-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 7148 (2209 equ; 0 cnn)
% Maximal formula atoms : 31 ( 3 avg)
% Number of connectives : 39637 ( 104 ~; 233 |;1179 &;35994 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4462 ( 371 atm;1204 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1216 (1173 usr; 70 con; 0-9 aty)
% Number of variables : 8061 ( 405 ^;7090 !; 430 ?;8061 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Munehiro Kobayashi;
% Generated: 2014-12-18
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_D: '2d.Point',V_circle: '2d.Shape'] :
( ( ( '2d.is-square/4' @ V_A @ V_B @ V_C @ V_D )
& ? [V_circle0: '2d.Shape'] :
( ( '2d.circle-type/1' @ V_circle0 )
& ( '2d.is-inscribed-in/2' @ ( '2d.square/4' @ V_A @ V_B @ V_C @ V_D ) @ V_circle0 ) )
& ( '2d.circle-type/1' @ V_circle )
& ( '2d.on/2' @ ( '2d.center-of/1' @ V_circle ) @ ( '2d.seg/2' @ V_A @ V_B ) )
& ( '2d.tangent/2' @ ( '2d.line/2' @ V_B @ V_C ) @ V_circle )
& ( '2d.tangent/2' @ ( '2d.line/2' @ V_C @ V_D ) @ V_circle )
& ( '2d.tangent/2' @ ( '2d.line/2' @ V_D @ V_A ) @ V_circle ) )
=> ( ( $sum @ ( '2d.distance/2' @ V_A @ V_D ) @ ( '2d.distance/2' @ V_B @ V_C ) )
= ( '2d.distance/2' @ V_A @ V_B ) ) ) ).
%------------------------------------------------------------------------------