TPTP Problem File: GEO407^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO407^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Circles)
% Problem : International Mathematical Olympiad, 1983, Problem 2
% Version : [Mat16] axioms : Especial.
% English : Let A be one of the two distinct points of intersection of two
% unequal coplanar circles C_1 and C_2 with centers O_1 and O_2,
% respectively. One of the common tangents to the circles touches
% C_1 at P_1 and C_2 at P_2, while the other touches C_1 at Q_1
% and C_2 at Q_2. Let M_1 be the midpoint of P_1Q_1, and M_2 be
% the midpoint of P_2Q_2. Prove that O_1AO_2 = M_1AM_2.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1983-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 7058 (2215 equ; 0 cnn)
% Maximal formula atoms : 32 ( 3 avg)
% Number of connectives : 39654 ( 106 ~; 233 |;1185 &;36003 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4461 ( 371 atm;1203 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1216 (1173 usr; 70 con; 0-9 aty)
% Number of variables : 8067 ( 405 ^;7096 !; 430 ?;8067 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Munehiro Kobayashi;
% Generated: 2014-12-18
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_A: '2d.Point',V_C1: '2d.Shape',V_C2: '2d.Shape',V_O1: '2d.Point',V_O2: '2d.Point',V_M1: '2d.Point',V_M2: '2d.Point',V_P1: '2d.Point',V_P2: '2d.Point',V_Q1: '2d.Point',V_Q2: '2d.Point'] :
( ( ( '2d.on/2' @ V_A @ ( '2d.intersection/2' @ V_C1 @ V_C2 ) )
& ? [V_B: '2d.Point'] :
( ( V_A != V_B )
& ( '2d.on/2' @ V_B @ ( '2d.intersection/2' @ V_C1 @ V_C2 ) ) )
& ( '2d.circle-type/1' @ V_C1 )
& ( '2d.circle-type/1' @ V_C2 )
& ( V_O1
= ( '2d.center-of/1' @ V_C1 ) )
& ( V_O2
= ( '2d.center-of/1' @ V_C2 ) )
& ( V_M1
= ( '2d.midpoint-of/2' @ V_P1 @ V_Q1 ) )
& ( V_M2
= ( '2d.midpoint-of/2' @ V_P2 @ V_Q2 ) )
& ( ( '2d.radius-of/1' @ V_C1 )
!= ( '2d.radius-of/1' @ V_C2 ) )
& ( '2d.tangent/3' @ V_C1 @ ( '2d.line/2' @ V_P1 @ V_P2 ) @ V_P1 )
& ( '2d.tangent/3' @ V_C2 @ ( '2d.line/2' @ V_P1 @ V_P2 ) @ V_P2 )
& ( '2d.tangent/3' @ V_C1 @ ( '2d.line/2' @ V_Q1 @ V_Q2 ) @ V_Q1 )
& ( '2d.tangent/3' @ V_C2 @ ( '2d.line/2' @ V_Q1 @ V_Q2 ) @ V_Q2 ) )
=> ( ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_O1 @ V_A @ V_O2 ) )
= ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_M1 @ V_A @ V_M2 ) ) ) ) ).
%------------------------------------------------------------------------------