TPTP Problem File: GEO406^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO406^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Polygons)
% Problem : International Mathematical Olympiad, 1982, Problem 5
% Version : [Mat16] axioms : Especial.
% English : The diagonals AC and CE of the regular hexagon ABCDEF are
% divided by the inner points M and N, respectively, so that
% AM/AC = CN/CE = r. Determine r if B, M, and N are collinear.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1982-5.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 711 unt;1199 typ; 0 def)
% Number of atoms : 8155 (2214 equ; 0 cnn)
% Maximal formula atoms : 40 ( 3 avg)
% Number of connectives : 39663 ( 108 ~; 233 |;1181 &;36015 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4465 ( 371 atm;1206 fun; 951 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1215 (1172 usr; 69 con; 0-9 aty)
% Number of variables : 8064 ( 406 ^;7085 !; 437 ?;8064 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-11-20
% : Answer
% ^ [V_r_dot_0: $real] :
% ( V_r_dot_0
% = ( $quotient @ 1.0 @ 3.0 ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_r: $real] :
? [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_D: '2d.Point',V_E: '2d.Point',V_F: '2d.Point',V_M: '2d.Point',V_N: '2d.Point'] :
( ( '2d.is-regular-polygon/1' @ ( '2d.polygon/1' @ ( 'cons/2' @ '2d.Point' @ V_A @ ( 'cons/2' @ '2d.Point' @ V_B @ ( 'cons/2' @ '2d.Point' @ V_C @ ( 'cons/2' @ '2d.Point' @ V_D @ ( 'cons/2' @ '2d.Point' @ V_E @ ( 'cons/2' @ '2d.Point' @ V_F @ ( 'nil/0' @ '2d.Point' ) ) ) ) ) ) ) ) )
& ( '2d.on/2' @ V_M @ ( '2d.seg/2' @ V_A @ V_C ) )
& ( '2d.on/2' @ V_N @ ( '2d.seg/2' @ V_C @ V_E ) )
& ( V_M != V_A )
& ( V_M != V_C )
& ( V_N != V_C )
& ( V_N != V_E )
& ( ( $quotient @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A @ V_M ) ) @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A @ V_C ) ) )
= ( $quotient @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_C @ V_N ) ) @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_C @ V_E ) ) ) )
& ( ( $quotient @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A @ V_M ) ) @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A @ V_C ) ) )
= V_r )
& ( '2d.colinear/3' @ V_B @ V_M @ V_N ) ) ) ).
%------------------------------------------------------------------------------