TPTP Problem File: GEO405^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO405^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Transformational geometry)
% Problem : International Mathematical Olympiad, 1982, Problem 2
% Version : [Mat16] axioms : Especial.
% English : A non-isosceles triangle A_1A_2A_3 is given with sides a_1, a_2,
% a_3 (a_i is the side opposite A_i). For all i = 1, 2, 3, M_i is
% the midpoint of side a_i, and T_i is the point where the incircle
% touches side a_i. Denote by S_i the reflection of T_i in the
% interior bisector of angle A_i. Prove that the lines M_1S_1,
% M_2S_2, and M_3S_3 are concurrent.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1982-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 7230 (2214 equ; 0 cnn)
% Maximal formula atoms : 34 ( 3 avg)
% Number of connectives : 39695 ( 105 ~; 233 |;1193 &;36037 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 44 ( 8 avg)
% Number arithmetic : 4464 ( 371 atm;1203 fun; 951 num;1939 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1220 (1177 usr; 74 con; 0-9 aty)
% Number of variables : 8075 ( 405 ^;7104 !; 430 ?;8075 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-11-20
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_A1: '2d.Point',V_A2: '2d.Point',V_A3: '2d.Point',V_a1: $real,V_a2: $real,V_a3: $real,V_M1: '2d.Point',V_M2: '2d.Point',V_M3: '2d.Point',V_K: '2d.Shape',V_T1: '2d.Point',V_T2: '2d.Point',V_T3: '2d.Point',V_L1: '2d.Shape',V_L2: '2d.Shape',V_L3: '2d.Shape',V_S1: '2d.Point',V_S2: '2d.Point',V_S3: '2d.Point'] :
( ( ~ ( '2d.is-isosceles-triangle/3' @ V_A1 @ V_A2 @ V_A3 )
& ( ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A2 @ V_A3 ) )
= V_a1 )
& ( ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A1 @ V_A3 ) )
= V_a2 )
& ( ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A2 @ V_A1 ) )
= V_a3 )
& ( V_M1
= ( '2d.midpoint-of/2' @ V_A2 @ V_A3 ) )
& ( V_M2
= ( '2d.midpoint-of/2' @ V_A1 @ V_A3 ) )
& ( V_M3
= ( '2d.midpoint-of/2' @ V_A2 @ V_A1 ) )
& ( '2d.circle-type/1' @ V_K )
& ( '2d.is-inscribed-in/2' @ V_K @ ( '2d.triangle/3' @ V_A1 @ V_A2 @ V_A3 ) )
& ( '2d.tangent/3' @ ( '2d.line/2' @ V_A1 @ V_A2 ) @ V_K @ V_T3 )
& ( '2d.tangent/3' @ ( '2d.line/2' @ V_A1 @ V_A3 ) @ V_K @ V_T2 )
& ( '2d.tangent/3' @ ( '2d.line/2' @ V_A3 @ V_A2 ) @ V_K @ V_T1 )
& ( '2d.line-type/1' @ V_L1 )
& ( '2d.line-type/1' @ V_L2 )
& ( '2d.line-type/1' @ V_L3 )
& ( '2d.is-angle-bisector/2' @ V_L1 @ ( '2d.angle/3' @ V_A2 @ V_A1 @ V_A3 ) )
& ( '2d.is-angle-bisector/2' @ V_L2 @ ( '2d.angle/3' @ V_A1 @ V_A2 @ V_A3 ) )
& ( '2d.is-angle-bisector/2' @ V_L3 @ ( '2d.angle/3' @ V_A2 @ V_A3 @ V_A1 ) )
& ( '2d.line-symmetry/3' @ V_S1 @ V_T1 @ V_L1 )
& ( '2d.line-symmetry/3' @ V_S2 @ V_T2 @ V_L2 )
& ( '2d.line-symmetry/3' @ V_S3 @ V_T3 @ V_L3 ) )
=> ? [V_X: '2d.Point'] :
( ( '2d.intersect/3' @ ( '2d.line/2' @ V_M1 @ V_S1 ) @ ( '2d.line/2' @ V_M2 @ V_S2 ) @ V_X )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_M2 @ V_S2 ) @ ( '2d.line/2' @ V_M3 @ V_S3 ) @ V_X ) ) ) ).
%------------------------------------------------------------------------------