TPTP Problem File: GEO404^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO404^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Lines and planes in 3D space)
% Problem : International Mathematical Olympiad, 1979, Problem 4
% Version : [Mat16] axioms : Especial.
% English : Given a plane pi, a point P in this plane and a point Q not in
% pi, find all points R in pi such that the ratio (QP + PR)/QR is
% a maximum.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1979-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3490 ( 727 unt;1204 typ; 0 def)
% Number of atoms : 6492 (2211 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39635 ( 105 ~; 233 |;1177 &;35993 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4467 ( 372 atm;1207 fun; 952 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1216 (1173 usr; 70 con; 0-9 aty)
% Number of variables : 8060 ( 406 ^;7086 !; 432 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 6; Author: Yiyang Zhan;
% Generated: 2014-12-19
% : Answer
% ^ [V_R_max_dot_0: '3d.Point'] :
% ? [V_T: '3d.Point',V_S: '3d.Point'] :
% ( ( V_T
% = ( '3d.foot-of-perpendicular-line-from-to/2' @ ( '3d.point/3' @ 'Qx/0' @ 'Qy/0' @ 'Qz/0' ) @ '3d.xy-plane/0' ) )
% & ( ( ( V_T
% != ( '3d.point/3' @ 'Px/0' @ 'Py/0' @ 0.0 ) )
% & ( '3d.point-symmetry/3' @ V_S @ ( '3d.point/3' @ 'Px/0' @ 'Py/0' @ 0.0 ) @ V_T )
% & ( '3d.on/2' @ V_R_max_dot_0 @ ( '3d.line/2' @ V_S @ V_T ) )
% & ( ( '3d.rad-of-angle/1' @ ( '3d.angle/3' @ V_S @ ( '3d.point/3' @ 'Qx/0' @ 'Qy/0' @ 'Qz/0' ) @ V_R_max_dot_0 ) )
% = ( $quotient @ 'Pi/0' @ 2.0 ) ) )
% | ( ( V_T
% = ( '3d.point/3' @ 'Px/0' @ 'Py/0' @ 0.0 ) )
% & ( '3d.on/2' @ V_R_max_dot_0 @ ( '3d.circle/3' @ ( '3d.point/3' @ 'Px/0' @ 'Py/0' @ 0.0 ) @ ( '3d.distance/2' @ ( '3d.point/3' @ 'Qx/0' @ 'Qy/0' @ 'Qz/0' ) @ ( '3d.point/3' @ 'Px/0' @ 'Py/0' @ 0.0 ) ) @ ( '3d.vec3d/3' @ 0.0 @ 0.0 @ 1.0 ) ) ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('Px/0_type',type,
'Px/0': $real ).
thf('Py/0_type',type,
'Py/0': $real ).
thf('Qx/0_type',type,
'Qx/0': $real ).
thf('Qy/0_type',type,
'Qy/0': $real ).
thf('Qz/0_type',type,
'Qz/0': $real ).
thf(p_qustion,conjecture,
( 'find/1' @ '3d.Point'
@ ^ [V_R_max: '3d.Point'] :
? [V_pi: '3d.Shape',V_P: '3d.Point',V_Q: '3d.Point'] :
( ( V_pi = '3d.xy-plane/0' )
& ( V_P
= ( '3d.point/3' @ 'Px/0' @ 'Py/0' @ 0.0 ) )
& ( V_Q
= ( '3d.point/3' @ 'Qx/0' @ 'Qy/0' @ 'Qz/0' ) )
& ~ ( '3d.on/2' @ V_Q @ V_pi )
& ( '3d.on/2' @ V_R_max @ V_pi )
& ! [V_R: '3d.Point'] :
( ( '3d.on/2' @ V_R @ V_pi )
=> ( $lesseq @ ( $quotient @ ( $sum @ ( '3d.distance/2' @ V_Q @ V_P ) @ ( '3d.distance/2' @ V_P @ V_R ) ) @ ( '3d.distance/2' @ V_Q @ V_R ) ) @ ( $quotient @ ( $sum @ ( '3d.distance/2' @ V_Q @ V_P ) @ ( '3d.distance/2' @ V_P @ V_R_max ) ) @ ( '3d.distance/2' @ V_Q @ V_R_max ) ) ) ) ) ) ).
%------------------------------------------------------------------------------