TPTP Problem File: GEO403^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO403^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Hexahedrons)
% Problem : International Mathematical Olympiad, 1978, Problem 2
% Version : [Mat16] axioms : Especial.
% English : P is a given point inside a given sphere. Three mutually
% perpendicular rays from P intersect the sphere at points U, V,
% and W; Q denotes the vertex diagonally opposite to P in the
% parallelepiped determined by PU, PV, and PW. Find the locus of
% Q for all such triads of rays from P.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1978-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3492 ( 727 unt;1206 typ; 0 def)
% Number of atoms : 6854 (2211 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39648 ( 104 ~; 233 |;1183 &;36002 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4461 ( 371 atm;1203 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1223 (1180 usr; 77 con; 0-9 aty)
% Number of variables : 8064 ( 406 ^;7085 !; 437 ?;8064 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 6; Author: Jumma Kudo;
% Generated: 2014-11-20
% : Answer
% ^ [V_Q_dot_0: '3d.Point'] :
% ( '3d.on/2' @ V_Q_dot_0 @ ( '3d.sphere/2' @ ( '3d.point/3' @ 'cx/0' @ 'cy/0' @ 'cz/0' ) @ ( 'sqrt/1' @ ( $difference @ ( $product @ 3.0 @ ( '^/2' @ 'r/0' @ 2.0 ) ) @ ( '3d.distance^2/2' @ ( '3d.point/3' @ 'cx/0' @ 'cy/0' @ 'cz/0' ) @ ( '3d.point/3' @ 'px/0' @ 'py/0' @ 'pz/0' ) ) ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('cx/0_type',type,
'cx/0': $real ).
thf('cy/0_type',type,
'cy/0': $real ).
thf('cz/0_type',type,
'cz/0': $real ).
thf('px/0_type',type,
'px/0': $real ).
thf('py/0_type',type,
'py/0': $real ).
thf('pz/0_type',type,
'pz/0': $real ).
thf('r/0_type',type,
'r/0': $real ).
thf(p_qustion,conjecture,
( 'find/1' @ '3d.Point'
@ ^ [V_Q: '3d.Point'] :
? [V_P: '3d.Point',V_U: '3d.Point',V_V: '3d.Point',V_W: '3d.Point',V_S: '3d.Shape',V_U2: '3d.Point',V_V2: '3d.Point',V_W2: '3d.Point'] :
( ( '3d.sphere-type/1' @ V_S )
& ( ( '3d.center-of/1' @ V_S )
= ( '3d.point/3' @ 'cx/0' @ 'cy/0' @ 'cz/0' ) )
& ( 'r/0'
= ( '3d.radius-of/1' @ V_S ) )
& ( '3d.point-inside-of/2' @ V_P @ V_S )
& ( V_P
= ( '3d.point/3' @ 'px/0' @ 'py/0' @ 'pz/0' ) )
& ( '3d.on/2' @ V_U @ V_S )
& ( '3d.on/2' @ V_V @ V_S )
& ( '3d.on/2' @ V_W @ V_S )
& ( '3d.perpendicular/2' @ ( '3d.line/2' @ V_P @ V_U ) @ ( '3d.line/2' @ V_P @ V_V ) )
& ( '3d.perpendicular/2' @ ( '3d.line/2' @ V_P @ V_W ) @ ( '3d.line/2' @ V_P @ V_V ) )
& ( '3d.perpendicular/2' @ ( '3d.line/2' @ V_P @ V_U ) @ ( '3d.line/2' @ V_P @ V_W ) )
& ( '3d.is-parallelopiped/8' @ V_P @ V_U @ V_V2 @ V_W @ V_V @ V_W2 @ V_Q @ V_U2 ) ) ) ).
%------------------------------------------------------------------------------