TPTP Problem File: GEO402^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO402^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Trigonometric functions)
% Problem : International Mathematical Olympiad, 1977, Problem 4
% Version : [Mat16] axioms : Especial.
% English : Four real constants a, b, A, B are given, and[ f (theta) = 1 - a
% costheta - b sintheta - A cos 2theta - B sin 2theta. Prove that
% if f(theta) >= 0 for all real theta, then a^2+b^2 =< 2 and
% A^2 + B^2 =< 1.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1977-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6698 (2208 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39640 ( 104 ~; 233 |;1173 &;36003 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4495 ( 374 atm;1219 fun; 961 num;1941 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1209 (1166 usr; 63 con; 0-9 aty)
% Number of variables : 8060 ( 405 ^;7090 !; 429 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: trans; Score: 6; Author: Jumma Kudo;
% Generated: 2014-12-23
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_a: $real,V_b: $real,V_A: $real,V_B: $real] :
( ! [V_theta: $real] : ( $greatereq @ ( $sum @ 1.0 @ ( $sum @ ( $uminus @ ( $product @ V_a @ ( 'cos/1' @ V_theta ) ) ) @ ( $sum @ ( $uminus @ ( $product @ V_b @ ( 'sin/1' @ V_theta ) ) ) @ ( $sum @ ( $uminus @ ( $product @ V_A @ ( 'cos/1' @ ( $product @ 2.0 @ V_theta ) ) ) ) @ ( $uminus @ ( $product @ V_B @ ( 'sin/1' @ ( $product @ 2.0 @ V_theta ) ) ) ) ) ) ) ) @ 0.0 )
=> ( ( $lesseq @ ( $sum @ ( '^/2' @ V_a @ 2.0 ) @ ( '^/2' @ V_b @ 2.0 ) ) @ 2.0 )
& ( $lesseq @ ( $sum @ ( '^/2' @ V_A @ 2.0 ) @ ( '^/2' @ V_B @ 2.0 ) ) @ 1.0 ) ) ) ).
%------------------------------------------------------------------------------