TPTP Problem File: GEO401^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO401^1 : TPTP v9.1.0. Released v7.0.0.
% Domain : Geometry (Polygons)
% Problem : International Mathematical Olympiad, 1977, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Equilateral triangles ABK, BCL, CDM, DAN are constructed inside
% the square ABCD. Prove that the midpoints of the four segments
% KL, LM, MN, NK and the midpoints of the eight segments AK, BK,
% BL, CL, CM, DM, DN, AN are the twelve vertices of a regular
% dodecagon.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1977-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 711 unt;1199 typ; 0 def)
% Number of atoms : 8108 (2208 equ; 0 cnn)
% Maximal formula atoms : 40 ( 3 avg)
% Number of connectives : 39704 ( 104 ~; 233 |;1180 &;36060 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4461 ( 371 atm;1203 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1215 (1172 usr; 69 con; 0-9 aty)
% Number of variables : 8063 ( 405 ^;7093 !; 429 ?;8063 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 6; Author: Jumma Kudo;
% Generated: 2014-12-23
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_D: '2d.Point',V_M: '2d.Point',V_N: '2d.Point',V_L: '2d.Point',V_K: '2d.Point'] :
( ( ( '2d.is-square/4' @ V_A @ V_B @ V_C @ V_D )
& ( '2d.is-equilateral-triangle/3' @ V_A @ V_B @ V_K )
& ( '2d.is-equilateral-triangle/3' @ V_B @ V_C @ V_L )
& ( '2d.is-equilateral-triangle/3' @ V_C @ V_D @ V_M )
& ( '2d.is-equilateral-triangle/3' @ V_D @ V_A @ V_N )
& ( '2d.point-inside-of/2' @ V_M @ ( '2d.square/4' @ V_A @ V_B @ V_C @ V_D ) )
& ( '2d.point-inside-of/2' @ V_N @ ( '2d.square/4' @ V_A @ V_B @ V_C @ V_D ) )
& ( '2d.point-inside-of/2' @ V_K @ ( '2d.square/4' @ V_A @ V_B @ V_C @ V_D ) )
& ( '2d.point-inside-of/2' @ V_L @ ( '2d.square/4' @ V_A @ V_B @ V_C @ V_D ) ) )
=> ( '2d.is-regular-polygon/1' @ ( '2d.polygon/1' @ ( 'cons/2' @ '2d.Point' @ ( '2d.midpoint-of/2' @ V_K @ V_L ) @ ( 'cons/2' @ '2d.Point' @ ( '2d.midpoint-of/2' @ V_L @ V_M ) @ ( 'cons/2' @ '2d.Point' @ ( '2d.midpoint-of/2' @ V_M @ V_N ) @ ( 'cons/2' @ '2d.Point' @ ( '2d.midpoint-of/2' @ V_N @ V_K ) @ ( 'cons/2' @ '2d.Point' @ ( '2d.midpoint-of/2' @ V_A @ V_K ) @ ( 'cons/2' @ '2d.Point' @ ( '2d.midpoint-of/2' @ V_B @ V_K ) @ ( 'cons/2' @ '2d.Point' @ ( '2d.midpoint-of/2' @ V_B @ V_L ) @ ( 'cons/2' @ '2d.Point' @ ( '2d.midpoint-of/2' @ V_C @ V_L ) @ ( 'cons/2' @ '2d.Point' @ ( '2d.midpoint-of/2' @ V_C @ V_M ) @ ( 'cons/2' @ '2d.Point' @ ( '2d.midpoint-of/2' @ V_D @ V_M ) @ ( 'cons/2' @ '2d.Point' @ ( '2d.midpoint-of/2' @ V_D @ V_N ) @ ( 'cons/2' @ '2d.Point' @ ( '2d.midpoint-of/2' @ V_A @ V_N ) @ ( 'nil/0' @ '2d.Point' ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------