TPTP Problem File: GEO400^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO400^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Quadrangles)
% Problem : International Mathematical Olympiad, 1976, Problem 1
% Version : [Mat16] axioms : Especial.
% English : In a plane convex quadrilateral of area 32, the sum of the lengths
% of two opposite sides and one diagonal is 16. Determine all
% possible lengths of the other diagonal.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1976-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6761 (2211 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39622 ( 104 ~; 233 |;1175 &;35984 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4466 ( 371 atm;1205 fun; 953 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1214 (1169 usr; 68 con; 0-9 aty)
% Number of variables : 8060 ( 406 ^;7085 !; 433 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 5; Author: Jumma Kudo;
% Generated: 2014-11-26
% : Answer
% ^ [V_L_dot_0: $real] :
% ( V_L_dot_0
% = ( $product @ 8.0 @ ( 'sqrt/1' @ 2.0 ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_L: $real] :
? [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_D: '2d.Point'] :
( ( '2d.is-square/4' @ V_A @ V_B @ V_C @ V_D )
& ( ( '2d.area-of/1' @ ( '2d.square/4' @ V_A @ V_B @ V_C @ V_D ) )
= 32.0 )
& ( ( $sum @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A @ V_B ) ) @ ( $sum @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_C @ V_D ) ) @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A @ V_C ) ) ) )
= 16.0 )
& ( V_L
= ( '2d.length-of/1' @ ( '2d.seg/2' @ V_B @ V_D ) ) ) ) ) ).
%------------------------------------------------------------------------------