TPTP Problem File: GEO399^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO399^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Tetrahedrons)
% Problem : International Mathematical Olympiad, 1972, Problem 6
% Version : [Mat16] axioms : Especial.
% English : Given four distinct parallel planes, prove that there exists a
% regular tetrahedron with a vertex on each plane.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1972-6.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 711 unt;1199 typ; 0 def)
% Number of atoms : 7851 (2208 equ; 0 cnn)
% Maximal formula atoms : 40 ( 3 avg)
% Number of connectives : 39641 ( 104 ~; 233 |;1183 &;35994 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4461 ( 371 atm;1203 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1213 (1170 usr; 67 con; 0-9 aty)
% Number of variables : 8063 ( 405 ^;7089 !; 433 ?;8063 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 8; Author: Jumma Kudo;
% Generated: 2014-11-27
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_PL1: '3d.Shape',V_PL2: '3d.Shape',V_PL3: '3d.Shape',V_PL4: '3d.Shape'] :
( ( ( '3d.plane-type/1' @ V_PL1 )
& ( '3d.plane-type/1' @ V_PL2 )
& ( '3d.plane-type/1' @ V_PL3 )
& ( '3d.plane-type/1' @ V_PL4 )
& ( '3d.parallel/2' @ V_PL1 @ V_PL2 )
& ( '3d.parallel/2' @ V_PL2 @ V_PL3 )
& ( '3d.parallel/2' @ V_PL3 @ V_PL4 )
& ( 'pairwise-distinct/1' @ '3d.Shape' @ ( 'cons/2' @ '3d.Shape' @ V_PL1 @ ( 'cons/2' @ '3d.Shape' @ V_PL2 @ ( 'cons/2' @ '3d.Shape' @ V_PL3 @ ( 'cons/2' @ '3d.Shape' @ V_PL4 @ ( 'nil/0' @ '3d.Shape' ) ) ) ) ) ) )
=> ? [V_P1: '3d.Point',V_P2: '3d.Point',V_P3: '3d.Point',V_P4: '3d.Point'] :
( ( '3d.on/2' @ V_P1 @ V_PL1 )
& ( '3d.on/2' @ V_P2 @ V_PL2 )
& ( '3d.on/2' @ V_P3 @ V_PL3 )
& ( '3d.on/2' @ V_P4 @ V_PL4 )
& ( '3d.is-regular-tetrahedron/4' @ V_P1 @ V_P2 @ V_P3 @ V_P4 ) ) ) ).
%------------------------------------------------------------------------------