TPTP Problem File: GEO398^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO398^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Circles)
% Problem : International Mathematical Olympiad, 1969, Problem 4
% Version : [Mat16] axioms : Especial.
% English : A semicircular arc gamma is drawn on AB as diameter. C is a
% point on gamma other than A and B, and D is the foot of the
% perpendicular from C to AB. We consider three circles, gamma_1,
% gamma_2, gamma_3, all tangent to the line AB. Of these, gamma_1
% is inscribed in triangle ABC, while gamma_2 and gamma_3 are both
% tangent to CD and to gamma, one on each side of CD. Prove that
% gamma_1, gamma_2 and gamma_3 have a second tangent in common.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1969-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 7156 (2212 equ; 0 cnn)
% Maximal formula atoms : 32 ( 3 avg)
% Number of connectives : 39671 ( 107 ~; 233 |;1191 &;36013 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4461 ( 371 atm;1203 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1218 (1175 usr; 72 con; 0-9 aty)
% Number of variables : 8064 ( 405 ^;7093 !; 430 ?;8064 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 6; Author: Jumma Kudo;
% Generated: 2014-12-18
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_A: '2d.Point',V_B: '2d.Point',V_Gamma: '2d.Shape',V_C: '2d.Point',V_D: '2d.Point',V_Gamma1: '2d.Shape',V_Gamma2: '2d.Shape',V_Gamma3: '2d.Shape'] :
( ( ( '2d.circle-type/1' @ V_Gamma )
& ( '2d.is-diameter-of/2' @ ( '2d.seg/2' @ V_A @ V_B ) @ V_Gamma )
& ( '2d.on/2' @ V_C @ V_Gamma )
& ( V_C != V_A )
& ( V_C != V_B )
& ( ( '2d.foot-of-perpendicular-line-from-to/2' @ V_C @ ( '2d.line/2' @ V_A @ V_B ) )
= V_D )
& ( '2d.circle-type/1' @ V_Gamma1 )
& ( '2d.circle-type/1' @ V_Gamma2 )
& ( '2d.circle-type/1' @ V_Gamma3 )
& ( '2d.tangent/2' @ ( '2d.line/2' @ V_A @ V_B ) @ V_Gamma1 )
& ( '2d.tangent/2' @ ( '2d.line/2' @ V_A @ V_B ) @ V_Gamma2 )
& ( '2d.tangent/2' @ ( '2d.line/2' @ V_A @ V_B ) @ V_Gamma3 )
& ( '2d.is-inscribed-in/2' @ V_Gamma1 @ ( '2d.triangle/3' @ V_A @ V_B @ V_C ) )
& ( '2d.tangent/2' @ ( '2d.seg/2' @ V_C @ V_D ) @ V_Gamma2 )
& ( '2d.tangent/2' @ ( '2d.seg/2' @ V_C @ V_D ) @ V_Gamma3 )
& ( '2d.intersect/2' @ ( '2d.seg/2' @ V_C @ V_D ) @ ( '2d.seg/2' @ ( '2d.center-of/1' @ V_Gamma2 ) @ ( '2d.center-of/1' @ V_Gamma3 ) ) ) )
=> ? [V_l: '2d.Shape'] :
( ( '2d.line-type/1' @ V_l )
& ( '2d.tangent/2' @ V_l @ V_Gamma1 )
& ( '2d.tangent/2' @ V_l @ V_Gamma2 )
& ( '2d.tangent/2' @ V_l @ V_Gamma3 )
& ( V_l
!= ( '2d.line/2' @ V_A @ V_B ) ) ) ) ).
%------------------------------------------------------------------------------