TPTP Problem File: GEO397^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO397^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Tetrahedrons)
% Problem : International Mathematical Olympiad, 1969, Problem 3
% Version : [Mat16] axioms : Especial.
% English : For each value of k = 1, 2, 3, 4, 5, find necessary and suffcient
% conditions on the number a > 0 so that there exists a tetrahedron
% with k edges of length a, and the remaining 6 - k edges of
% length 1.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1969-3.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6601 (2214 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39622 ( 104 ~; 233 |;1178 &;35981 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4467 ( 371 atm;1203 fun; 956 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1210 (1167 usr; 64 con; 0-9 aty)
% Number of variables : 8060 ( 406 ^;7085 !; 433 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-12-18
% : Answer
% ^ [V_a_dot_0: $real] :
% ( ( $less @ 0.0 @ V_a_dot_0 )
% & ( $less @ V_a_dot_0 @ ( 'sqrt/1' @ 3.0 ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_a: $real] :
? [V_A: '3d.Point',V_B: '3d.Point',V_C: '3d.Point',V_D: '3d.Point'] :
( ( '3d.is-tetrahedron/4' @ V_A @ V_B @ V_C @ V_D )
& ( ( '3d.length-of/1' @ ( '3d.seg/2' @ V_A @ V_B ) )
= V_a )
& ( ( '3d.length-of/1' @ ( '3d.seg/2' @ V_A @ V_C ) )
= 1.0 )
& ( ( '3d.length-of/1' @ ( '3d.seg/2' @ V_A @ V_D ) )
= 1.0 )
& ( ( '3d.length-of/1' @ ( '3d.seg/2' @ V_B @ V_C ) )
= 1.0 )
& ( ( '3d.length-of/1' @ ( '3d.seg/2' @ V_D @ V_B ) )
= 1.0 )
& ( ( '3d.length-of/1' @ ( '3d.seg/2' @ V_D @ V_C ) )
= 1.0 ) ) ) ).
%------------------------------------------------------------------------------