TPTP Problem File: GEO396^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO396^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Tetrahedrons)
% Problem : International Mathematical Olympiad, 1968, Problem 4
% Version : [Mat16] axioms : Especial.
% English : Prove that in every tetrahedron there is a vertex such that the
% three edges meeting there have lengths which are the sides of a
% triangle.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1968-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6469 (2220 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39660 ( 104 ~; 236 |;1181 &;36012 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4461 ( 371 atm;1203 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1209 (1166 usr; 63 con; 0-9 aty)
% Number of variables : 8062 ( 405 ^;7089 !; 432 ?;8062 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 5; Author: Jumma Kudo;
% Generated: 2014-11-28
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_A: '3d.Point',V_B: '3d.Point',V_C: '3d.Point',V_D: '3d.Point'] :
( ( '3d.is-tetrahedron/4' @ V_A @ V_B @ V_C @ V_D )
=> ? [V_P: '3d.Point',V_Q: '3d.Point',V_R: '3d.Point'] :
( ( '3d.is-triangle/3' @ V_P @ V_Q @ V_R )
& ( ( ( ( '3d.distance/2' @ V_P @ V_Q )
= ( '3d.distance/2' @ V_A @ V_B ) )
& ( ( '3d.distance/2' @ V_Q @ V_R )
= ( '3d.distance/2' @ V_A @ V_C ) )
& ( ( '3d.distance/2' @ V_R @ V_P )
= ( '3d.distance/2' @ V_A @ V_D ) ) )
| ( ( ( '3d.distance/2' @ V_P @ V_Q )
= ( '3d.distance/2' @ V_B @ V_A ) )
& ( ( '3d.distance/2' @ V_Q @ V_R )
= ( '3d.distance/2' @ V_B @ V_B ) )
& ( ( '3d.distance/2' @ V_R @ V_P )
= ( '3d.distance/2' @ V_B @ V_D ) ) )
| ( ( ( '3d.distance/2' @ V_P @ V_Q )
= ( '3d.distance/2' @ V_C @ V_A ) )
& ( ( '3d.distance/2' @ V_Q @ V_R )
= ( '3d.distance/2' @ V_C @ V_B ) )
& ( ( '3d.distance/2' @ V_R @ V_P )
= ( '3d.distance/2' @ V_C @ V_D ) ) )
| ( ( ( '3d.distance/2' @ V_P @ V_Q )
= ( '3d.distance/2' @ V_D @ V_A ) )
& ( ( '3d.distance/2' @ V_Q @ V_R )
= ( '3d.distance/2' @ V_D @ V_B ) )
& ( ( '3d.distance/2' @ V_R @ V_P )
= ( '3d.distance/2' @ V_D @ V_C ) ) ) ) ) ) ).
%------------------------------------------------------------------------------