TPTP Problem File: GEO394^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO394^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Quadrangles)
% Problem : International Mathematical Olympiad, 1967, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Let ABCD be a parallelogram with side lengths AB = a, AD = 1, and
% with angle BAD = alpha. If triangle ABD is acute, prove that the
% four circles of radius 1 with centers A, B, C, D cover the
% parallelogram if and only if a =< cos(alpha) + sqrt(3) sin(alpha).
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1967-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 7267 (2209 equ; 0 cnn)
% Maximal formula atoms : 26 ( 3 avg)
% Number of connectives : 39660 ( 104 ~; 237 |;1174 &;36016 @)
% (1096 <=>;1033 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4470 ( 372 atm;1205 fun; 957 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1219 (1176 usr; 73 con; 0-9 aty)
% Number of variables : 8060 ( 405 ^;7090 !; 429 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 6; Author: Jumma Kudo;
% Generated: 2014-12-17
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_D: '2d.Point'] :
( ( ( '2d.is-parallelogram/4' @ V_A @ V_B @ V_C @ V_D )
& ( '2d.is-acute/1' @ ( '2d.angle/3' @ V_A @ V_B @ V_D ) )
& ( ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A @ V_D ) )
= 1.0 ) )
=> ( ! [V_P: '2d.Point'] :
( ( ( '2d.point-inside-of/2' @ V_P @ ( '2d.square/4' @ V_A @ V_B @ V_C @ V_D ) )
| ( '2d.on/2' @ V_P @ ( '2d.square/4' @ V_A @ V_B @ V_C @ V_D ) ) )
=> ( ( '2d.point-inside-of/2' @ V_P @ ( '2d.circle/2' @ V_A @ 1.0 ) )
| ( '2d.point-inside-of/2' @ V_P @ ( '2d.circle/2' @ V_B @ 1.0 ) )
| ( '2d.point-inside-of/2' @ V_P @ ( '2d.circle/2' @ V_C @ 1.0 ) )
| ( '2d.point-inside-of/2' @ V_P @ ( '2d.circle/2' @ V_D @ 1.0 ) ) ) )
<=> ( $lesseq @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A @ V_B ) ) @ ( $sum @ ( 'cos/1' @ ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_D @ V_A @ V_B ) ) ) @ ( $product @ ( 'sqrt/1' @ 3.0 ) @ ( 'sin/1' @ ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_D @ V_A @ V_B ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------