TPTP Problem File: GEO393^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO393^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Tetrahedrons)
% Problem : International Mathematical Olympiad, 1966, Problem 3
% Version : [Mat16] axioms : Especial.
% English : Prove: The sum of the distances of the vertices of a regular
% tetrahedron from the center of its circumscribed sphere is less
% than the sum of the distances of these vertices from any other
% point in space.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1966-3.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6693 (2209 equ; 0 cnn)
% Maximal formula atoms : 24 ( 2 avg)
% Number of connectives : 39651 ( 104 ~; 233 |;1178 &;36009 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4468 ( 372 atm;1209 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1212 (1169 usr; 66 con; 0-9 aty)
% Number of variables : 8062 ( 405 ^;7092 !; 429 ?;8062 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-11-28
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_A: '3d.Point',V_B: '3d.Point',V_C: '3d.Point',V_D: '3d.Point',V_K: '3d.Shape',V_Kc: '3d.Point',V_P: '3d.Point'] :
( ( ( '3d.is-regular-tetrahedron/4' @ V_A @ V_B @ V_C @ V_D )
& ( '3d.sphere-type/1' @ V_K )
& ( '3d.on/2' @ V_A @ V_K )
& ( '3d.on/2' @ V_B @ V_K )
& ( '3d.on/2' @ V_C @ V_K )
& ( '3d.on/2' @ V_D @ V_K )
& ( V_Kc
= ( '3d.center-of/1' @ V_K ) ) )
=> ( $less @ ( $sum @ ( '3d.length-of/1' @ ( '3d.seg/2' @ V_Kc @ V_A ) ) @ ( $sum @ ( '3d.length-of/1' @ ( '3d.seg/2' @ V_Kc @ V_B ) ) @ ( $sum @ ( '3d.length-of/1' @ ( '3d.seg/2' @ V_Kc @ V_C ) ) @ ( '3d.length-of/1' @ ( '3d.seg/2' @ V_Kc @ V_D ) ) ) ) ) @ ( $sum @ ( '3d.length-of/1' @ ( '3d.seg/2' @ V_P @ V_A ) ) @ ( $sum @ ( '3d.length-of/1' @ ( '3d.seg/2' @ V_P @ V_B ) ) @ ( $sum @ ( '3d.length-of/1' @ ( '3d.seg/2' @ V_P @ V_C ) ) @ ( '3d.length-of/1' @ ( '3d.seg/2' @ V_P @ V_D ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------