TPTP Problem File: GEO392^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO392^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Polyhedrons)
% Problem : International Mathematical Olympiad, 1965, Problem 5
% Version : [Mat16] axioms : Especial.
% English : Consider triangle OAB with acute angle AOB. Through a point M
% neq O perpendiculars are drawn to OA and OB, the feet of which
% are P and Q respectively. The point of intersection of the
% altitudes of triangle OPQ is H. What is the locus of H if M is
% permitted to range over (a) the side AB, (b) the interior of
% triangle OAB?
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1965-5.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3491 ( 727 unt;1205 typ; 0 def)
% Number of atoms : 7344 (2213 equ; 0 cnn)
% Maximal formula atoms : 31 ( 3 avg)
% Number of connectives : 39636 ( 104 ~; 233 |;1180 &;35993 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4464 ( 372 atm;1204 fun; 952 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1225 (1181 usr; 79 con; 0-9 aty)
% Number of variables : 8062 ( 406 ^;7085 !; 435 ?;8062 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-12-17
% : Answer
% ^ [V_H_dot_0: '2d.Point'] :
% ? [V_C: '2d.Point',V_D: '2d.Point'] :
% ( ( V_C
% = ( '2d.foot-of-perpendicular-line-from-to/2' @ ( '2d.point/2' @ 'Bx/0' @ 'By/0' ) @ ( '2d.line/2' @ ( '2d.point/2' @ 'Ox/0' @ 'Oy/0' ) @ ( '2d.point/2' @ 'Ax/0' @ 'Ay/0' ) ) ) )
% & ( V_D
% = ( '2d.foot-of-perpendicular-line-from-to/2' @ ( '2d.point/2' @ 'Ax/0' @ 'Ay/0' ) @ ( '2d.line/2' @ ( '2d.point/2' @ 'Ox/0' @ 'Oy/0' ) @ ( '2d.point/2' @ 'Bx/0' @ 'By/0' ) ) ) )
% & ( '2d.on/2' @ V_H_dot_0 @ ( '2d.seg/2' @ V_C @ V_D ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('Ax/0_type',type,
'Ax/0': $real ).
thf('Ay/0_type',type,
'Ay/0': $real ).
thf('Bx/0_type',type,
'Bx/0': $real ).
thf('By/0_type',type,
'By/0': $real ).
thf('Ox/0_type',type,
'Ox/0': $real ).
thf('Oy/0_type',type,
'Oy/0': $real ).
thf(p1_qustion,conjecture,
( 'find/1' @ '2d.Point'
@ ^ [V_H: '2d.Point'] :
? [V_O: '2d.Point',V_A: '2d.Point',V_B: '2d.Point',V_M: '2d.Point',V_P: '2d.Point',V_Q: '2d.Point'] :
( ( V_O
= ( '2d.point/2' @ 'Ox/0' @ 'Oy/0' ) )
& ( V_A
= ( '2d.point/2' @ 'Ax/0' @ 'Ay/0' ) )
& ( V_B
= ( '2d.point/2' @ 'Bx/0' @ 'By/0' ) )
& ( '2d.is-triangle/3' @ V_O @ V_A @ V_B )
& ( $less @ ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_A @ V_O @ V_B ) ) @ ( $product @ 90.0 @ 'Degree/0' ) )
& ( '2d.on/2' @ V_M @ ( '2d.seg/2' @ V_A @ V_B ) )
& ( V_P
= ( '2d.foot-of-perpendicular-line-from-to/2' @ V_M @ ( '2d.line/2' @ V_O @ V_A ) ) )
& ( V_Q
= ( '2d.foot-of-perpendicular-line-from-to/2' @ V_M @ ( '2d.line/2' @ V_O @ V_B ) ) )
& ( '2d.is-orthocenter-of/2' @ V_H @ ( '2d.triangle/3' @ V_O @ V_P @ V_Q ) ) ) ) ).
%------------------------------------------------------------------------------