TPTP Problem File: GEO391^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO391^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Polyhedrons)
% Problem : International Mathematical Olympiad, 1965, Problem 3
% Version : [Mat16] axioms : Especial.
% English : Given the tetrahedron ABCD whose edges AB and CD have lengths a
% and b respectively. The distance between the skew lines AB and
% CD is d, and the angle between them is omega. Tetrahedron ABCD
% is divided into two solids by plane epsilon, parallel to lines
% AB and CD. The ratio of the distances of epsilon from AB and CD
% is equal to k. Compute the ratio of the volumes of the two solids
% obtained.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1965-3.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3486 ( 728 unt;1200 typ; 0 def)
% Number of atoms : 7016 (2214 equ; 0 cnn)
% Maximal formula atoms : 20 ( 3 avg)
% Number of connectives : 39679 ( 104 ~; 233 |;1185 &;36031 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4474 ( 374 atm;1205 fun; 954 num;1941 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1222 (1179 usr; 76 con; 0-9 aty)
% Number of variables : 8065 ( 406 ^;7085 !; 438 ?;8065 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 8; Author: Yiyang Zhan;
% Generated: 2015-01-27
% : Answer
% ^ [V_ans_dot_0: $real] :
% ( V_ans_dot_0
% = ( $product @ ( '^/2' @ 'k/0' @ 2.0 ) @ ( $quotient @ ( $sum @ 'k/0' @ 3.0 ) @ ( $sum @ ( $product @ 3.0 @ 'k/0' ) @ 1.0 ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('k/0_type',type,
'k/0': $real ).
thf(p_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_ans: $real] :
? [V_A: '3d.Point',V_B: '3d.Point',V_C: '3d.Point',V_D: '3d.Point',V_a: $real,V_b: $real,V_d: $real,V_omega: $real,V_epsilon: '3d.Shape'] :
( ( '3d.is-tetrahedron/4' @ V_A @ V_B @ V_C @ V_D )
& ( $greater @ V_a @ 0.0 )
& ( $greater @ V_b @ 0.0 )
& ( V_a
= ( '3d.distance/2' @ V_A @ V_B ) )
& ( V_b
= ( '3d.distance/2' @ V_C @ V_D ) )
& ( '3d.are-skew-lines/2' @ ( '3d.line/2' @ V_A @ V_B ) @ ( '3d.line/2' @ V_C @ V_D ) )
& ( $greater @ V_d @ 0.0 )
& ( V_d
= ( '3d.line-line-distance/2' @ ( '3d.line/2' @ V_A @ V_B ) @ ( '3d.line/2' @ V_C @ V_D ) ) )
& ( V_omega
= ( '3d.rad-of-angle/1' @ ( '3d.formed-angle-of/2' @ ( '3d.line/2' @ V_A @ V_B ) @ ( '3d.line/2' @ V_C @ V_D ) ) ) )
& ( '3d.plane-type/1' @ V_epsilon )
& ( '3d.parallel/2' @ V_epsilon @ ( '3d.line/2' @ V_A @ V_B ) )
& ( '3d.parallel/2' @ V_epsilon @ ( '3d.line/2' @ V_C @ V_D ) )
& ( 'k/0'
= ( $quotient @ ( '3d.shape-shape-distance/2' @ V_epsilon @ ( '3d.line/2' @ V_A @ V_B ) ) @ ( '3d.shape-shape-distance/2' @ V_epsilon @ ( '3d.line/2' @ V_C @ V_D ) ) ) )
& ( V_ans
= ( $quotient @ ( '3d.volume-of/1' @ ( '3d.intersection/2' @ ( '3d.tetrahedron/4' @ V_A @ V_B @ V_C @ V_D ) @ ( '3d.divided-region-including/2' @ V_epsilon @ V_A ) ) ) @ ( '3d.volume-of/1' @ ( '3d.intersection/2' @ ( '3d.tetrahedron/4' @ V_A @ V_B @ V_C @ V_D ) @ ( '3d.divided-region-including/2' @ V_epsilon @ V_C ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------