TPTP Problem File: GEO387^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO387^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Triangles)
% Problem : International Mathematical Olympiad, 1962, Problem 6
% Version : [Mat16] axioms : Especial.
% English : Consider an isosceles triangle. Let r be the radius of its
% circumscribed circle and rho the radius of its inscribed circle.
% Prove that the distance d between the centers of these two circles
% is d = sqrt(r(r - 2rho)).
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1962-6.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6749 (2211 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39620 ( 104 ~; 233 |;1178 &;35978 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4467 ( 371 atm;1206 fun; 952 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1214 (1171 usr; 68 con; 0-9 aty)
% Number of variables : 8060 ( 405 ^;7090 !; 429 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 6; Author: Jumma Kudo;
% Generated: 2014-12-03
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_T: '2d.Shape',V_K1: '2d.Shape',V_K2: '2d.Shape',V_r: $real,V_rho: $real] :
( ( ( '2d.isosceles-triangle-type/1' @ V_T )
& ( '2d.circle-type/1' @ V_K1 )
& ( '2d.circle-type/1' @ V_K2 )
& ( '2d.is-inscribed-in/2' @ V_K1 @ V_T )
& ( '2d.is-inscribed-in/2' @ V_T @ V_K2 )
& ( V_r
= ( '2d.radius-of/1' @ V_K1 ) )
& ( V_rho
= ( '2d.radius-of/1' @ V_K2 ) ) )
=> ( ( '2d.length-of/1' @ ( '2d.seg/2' @ ( '2d.center-of/1' @ V_K1 ) @ ( '2d.center-of/1' @ V_K2 ) ) )
= ( 'sqrt/1' @ ( $product @ V_r @ ( $difference @ V_r @ ( $product @ 2.0 @ V_rho ) ) ) ) ) ) ).
%------------------------------------------------------------------------------