TPTP Problem File: GEO381^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO381^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Spheres and other surfaces)
% Problem : International Mathematical Olympiad, 1960, Problem 6
% Version : [Mat16] axioms : Especial.
% English : Consider a cone of revolution with an inscribed sphere tangent
% to the base of the cone. A cylinder is circumscribed about this
% sphere so that one of its bases lies in the base of the cone.
% Let V_1 be the volume of the cone and V_2 the volume of the
% cylinder. (a) Prove that V_1 != V_2. (b) Find the smallest number
% k for which V_1 = kV_2, for this case, construct the angle
% subtended by a diameter of the base of the cone at the vertex of
% the cone.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1960-6.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 727 unt;1199 typ; 0 def)
% Number of atoms : 6509 (2212 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39621 ( 104 ~; 233 |;1180 &;35978 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4466 ( 371 atm;1204 fun; 951 num;1940 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1216 (1173 usr; 70 con; 0-9 aty)
% Number of variables : 8062 ( 407 ^;7085 !; 434 ?;8062 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-12-04
% : Answer
% ^ [V_min_k_dot_0: $real] :
% ( V_min_k_dot_0
% = ( $quotient @ 4.0 @ 3.0 ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p2_1_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_min_k: $real] :
( 'minimum/2'
@ ( 'set-by-def/1' @ $real
@ ^ [V_k: $real] :
? [V_Cn: '3d.Shape',V_Sp: '3d.Shape',V_Cl: '3d.Shape',V_V1: $real,V_V2: $real] :
( ( '3d.right-cone-type/1' @ V_Cn )
& ( '3d.sphere-type/1' @ V_Sp )
& ( '3d.cylinder-type/1' @ V_Cl )
& ( '3d.is-inscribed-in/2' @ V_Sp @ V_Cn )
& ( '3d.is-inscribed-in/2' @ V_Cn @ V_Cl )
& ( ( '3d.extend-to-plane/1' @ ( '3d.base-of/1' @ V_Cn ) )
= ( '3d.extend-to-plane/1' @ ( '3d.base-of/1' @ V_Cl ) ) )
& ( V_V1
= ( '3d.volume-of/1' @ V_Cn ) )
& ( V_V2
= ( '3d.volume-of/1' @ V_Cl ) )
& ( V_V1
= ( $product @ V_k @ V_V2 ) ) ) )
@ V_min_k ) ) ).
%------------------------------------------------------------------------------