TPTP Problem File: GEO378^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO378^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Circles)
% Problem : International Mathematical Olympiad, 1959, Problem 5
% Version : [Mat16] axioms : Especial.
% English : An arbitrary point M is selected in the interior of the segment
% AB. The squares AMCD and MBEF are constructed on the same side
% of AB, with the segments AM and MB as their respective bases.
% The circles circumscribed about these squares, with centers P
% and Q, intersect at M and also at another point N. Let N' denote
% the point of intersection of the straight lines AF and BC.
% (a) Prove that the points N and N' coincide. (b) Prove that the
% straight lines MN pass through a fixed point S independent of
% the choice of M. (c) Find the locus of the midpoints of the
% segments PQ as M varies between A and B.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1959-5.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3489 ( 728 unt;1203 typ; 0 def)
% Number of atoms : 7331 (2214 equ; 0 cnn)
% Maximal formula atoms : 31 ( 3 avg)
% Number of connectives : 39655 ( 108 ~; 233 |;1186 &;36001 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4461 ( 371 atm;1203 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1221 (1178 usr; 75 con; 0-9 aty)
% Number of variables : 8067 ( 405 ^;7097 !; 429 ?;8067 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Score: 8; Author: Jumma Kudo;
% Generated: 2015-01-27
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('Ax/0_type',type,
'Ax/0': $real ).
thf('Ay/0_type',type,
'Ay/0': $real ).
thf('Bx/0_type',type,
'Bx/0': $real ).
thf('By/0_type',type,
'By/0': $real ).
thf(p1,conjecture,
! [V_A: '2d.Point',V_B: '2d.Point',V_M: '2d.Point',V_C: '2d.Point',V_D: '2d.Point',V_E: '2d.Point',V_F: '2d.Point',V_K1: '2d.Shape',V_K2: '2d.Shape',V_P: '2d.Point',V_Q: '2d.Point',V_N: '2d.Point'] :
( ( ( V_A != V_B )
& ( '2d.on/2' @ V_M @ ( '2d.seg/2' @ V_A @ V_B ) )
& ( V_M != V_A )
& ( V_M != V_B )
& ( '2d.is-regular-square/4' @ V_A @ V_M @ V_C @ V_D )
& ( '2d.is-regular-square/4' @ V_M @ V_B @ V_E @ V_F )
& ( '2d.vec-same-direction/2' @ ( '2d.vec/2' @ V_M @ V_C ) @ ( '2d.vec/2' @ V_M @ V_F ) )
& ( '2d.circle-type/1' @ V_K1 )
& ( '2d.circle-type/1' @ V_K2 )
& ( '2d.is-inscribed-in/2' @ ( '2d.square/4' @ V_A @ V_M @ V_C @ V_D ) @ V_K1 )
& ( '2d.is-inscribed-in/2' @ ( '2d.square/4' @ V_B @ V_M @ V_F @ V_E ) @ V_K2 )
& ( V_P
= ( '2d.center-of/1' @ V_K1 ) )
& ( V_Q
= ( '2d.center-of/1' @ V_K2 ) )
& ( '2d.intersect/3' @ V_K1 @ V_K2 @ V_N )
& ( V_M != V_N ) )
=> ( '2d.intersect/3' @ ( '2d.line/2' @ V_F @ V_A ) @ ( '2d.line/2' @ V_B @ V_C ) @ V_N ) ) ).
%------------------------------------------------------------------------------