TPTP Problem File: GEO373^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO373^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Geometric figures and equations)
% Problem : Chart System Math II+B Red Book, Problem 08CR2E050
% Version : [Mat16] axioms : Especial.
% English :
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Chart-2B-Red-08CR2E050.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 725 unt;1199 typ; 0 def)
% Number of atoms : 6707 (2212 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39613 ( 104 ~; 233 |;1174 &;35976 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4466 ( 371 atm;1205 fun; 952 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2410 (2410 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1214 (1171 usr; 68 con; 0-9 aty)
% Number of variables : 8062 ( 410 ^;7085 !; 431 ?;8062 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Level: 5; Author: Munehiro Kobayashi;
% Generated: 2014-12-27
% : Answer
% ( '2d.set-of-cfun/1'
% @ ^ [V_x_dot_0: $real,V_y_dot_0: $real] :
% ( ( ( $lesseq @ -3.0 @ V_x_dot_0 )
% & ( $lesseq @ V_x_dot_0 @ 3.0 )
% & ( ( V_y_dot_0 = 3.0 )
% | ( V_y_dot_0 = -3.0 ) ) )
% | ( ( ( V_x_dot_0 = 3.0 )
% | ( V_x_dot_0 = -3.0 ) )
% & ( $lesseq @ -3.0 @ V_y_dot_0 )
% & ( $lesseq @ V_y_dot_0 @ 3.0 ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_qustion,conjecture,
( 'draw/1' @ '2d.Shape'
@ ^ [V_P: '2d.Shape'] :
? [V_O: '2d.Point',V_D: '2d.Point' > '2d.Point' > $real] :
( ( V_O = '2d.origin/0' )
& ( V_D
= ( ^ [V_p: '2d.Point',V_q: '2d.Point'] : ( 'max/2' @ ( 'abs/1' @ ( $difference @ ( '2d.x-coord/1' @ V_p ) @ ( '2d.x-coord/1' @ V_q ) ) ) @ ( 'abs/1' @ ( $difference @ ( '2d.y-coord/1' @ V_p ) @ ( '2d.y-coord/1' @ V_q ) ) ) ) ) )
& ( V_P
= ( '2d.set-of-cfun/1'
@ ^ [V_x: $real,V_y: $real] :
( 3.0
= ( V_D @ V_O @ ( '2d.point/2' @ V_x @ V_y ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------