TPTP Problem File: GEO365^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO365^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Plane Geometry)
% Problem : Chart System Math I+A White Book, Problem 07CWAE168
% Version : [Mat16] axioms : Especial.
% English :
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Chart-1A-White-07CWAE168.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 711 unt;1199 typ; 0 def)
% Number of atoms : 8543 (2211 equ; 0 cnn)
% Maximal formula atoms : 40 ( 3 avg)
% Number of connectives : 39637 ( 104 ~; 233 |;1177 &;35997 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4466 ( 371 atm;1205 fun; 953 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1218 (1174 usr; 72 con; 0-9 aty)
% Number of variables : 8062 ( 406 ^;7085 !; 435 ?;8062 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Level: 3; Author: Takuya Matsuzaki;
% Generated: 2015-01-07
% : Answer
% ^ [V_x_dot_0: $real] :
% ( V_x_dot_0
% = ( $product @ 140.0 @ 'Degree/0' ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_x: $real] :
? [V_A: '2d.Point',V_P: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_D: '2d.Point',V_Q: '2d.Point'] :
( ( '2d.points-same-side/2' @ ( '2d.line/2' @ V_A @ V_B ) @ ( 'cons/2' @ '2d.Point' @ V_C @ ( 'cons/2' @ '2d.Point' @ V_D @ ( 'nil/0' @ '2d.Point' ) ) ) )
& ( '2d.on/2' @ V_P @ ( '2d.seg/2' @ V_A @ V_B ) )
& ( '2d.intersect/3' @ ( '2d.seg/2' @ V_C @ V_B ) @ ( '2d.seg/2' @ V_D @ V_A ) @ V_Q )
& ( ( $product @ 40.0 @ 'Degree/0' )
= ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_C @ V_P @ V_A ) ) )
& ( ( $product @ 40.0 @ 'Degree/0' )
= ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_D @ V_P @ V_B ) ) )
& ( V_x
= ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_A @ V_Q @ V_B ) ) ) ) ) ).
%------------------------------------------------------------------------------