TPTP Problem File: GEO361^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO361^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Plane Geometry)
% Problem : Chart System Math I+A Red Book, Problem 07CRAE057
% Version : [Mat16] axioms : Especial.
% English :
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Chart-1A-Red-07CRAE057.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3487 ( 727 unt;1201 typ; 0 def)
% Number of atoms : 7136 (2212 equ; 0 cnn)
% Maximal formula atoms : 31 ( 3 avg)
% Number of connectives : 39632 ( 104 ~; 233 |;1179 &;35990 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4463 ( 371 atm;1203 fun; 951 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1219 (1176 usr; 73 con; 0-9 aty)
% Number of variables : 8063 ( 407 ^;7085 !; 435 ?;8063 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Level: 4; Author: Takuya Matsuzaki;
% Generated: 2015-01-07
% : Answer
% ^ [V_PC_dot_0: $real] :
% ( V_PC_dot_0
% = ( 'sqrt/1' @ ( $product @ 'b/0' @ ( $sum @ 'b/0' @ 'a/0' ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('a/0_type',type,
'a/0': $real ).
thf('b/0_type',type,
'b/0': $real ).
thf(p_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_PC: $real] :
? [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_P: '2d.Point',V_g: '2d.Shape'] :
( ( '2d.line-type/1' @ V_g )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_A @ V_B ) @ V_g @ V_C )
& ( ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A @ V_B ) )
= 'a/0' )
& ( ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A @ V_C ) )
= 'b/0' )
& ( '2d.on/2' @ V_P @ V_g )
& ( 'maximum/2'
@ ( 'set-by-def/1' @ $real
@ ^ [V_angleAPB: $real] :
? [V_P_dot_0: '2d.Point'] :
( ( '2d.on/2' @ V_P_dot_0 @ V_g )
& ( V_angleAPB
= ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_A @ V_P_dot_0 @ V_B ) ) ) ) )
@ ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_A @ V_P @ V_B ) ) )
& ( V_PC
= ( '2d.length-of/1' @ ( '2d.seg/2' @ V_P @ V_C ) ) ) ) ) ).
%------------------------------------------------------------------------------