TPTP Problem File: GEO358^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO358^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Plane Geometry)
% Problem : Chart System Math I+A Blue Book, Problem 07CBAP177
% Version : [Mat16] axioms : Especial.
% English :
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Chart-1A-Blue-07CBAP177.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 7331 (2212 equ; 0 cnn)
% Maximal formula atoms : 32 ( 3 avg)
% Number of connectives : 39680 ( 104 ~; 233 |;1185 &;36032 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 34 ( 8 avg)
% Number arithmetic : 4465 ( 371 atm;1204 fun; 953 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1219 (1176 usr; 73 con; 0-9 aty)
% Number of variables : 8069 ( 406 ^;7085 !; 442 ?;8069 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Level: 4; Author: Takuya Matsuzaki;
% Generated: 2015-01-03
% : Answer
% ^ [V_ratio_dot_0: $real] : ( V_ratio_dot_0 = 2.0 ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_ratio: $real] :
? [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_D: '2d.Point',V_E: '2d.Point',V_F: '2d.Point',V_G: '2d.Point',V_H: '2d.Point',V_I: '2d.Point',V_J: '2d.Point',V_P: '2d.Point',V_Q: '2d.Point',V_R: '2d.Point'] :
( ( '2d.is-triangle/3' @ V_A @ V_B @ V_C )
& ( V_D
= ( '2d.midpoint-of/2' @ V_A @ V_C ) )
& ( '2d.divide-internally/4' @ V_E @ ( '2d.seg/2' @ V_A @ V_B ) @ 1.0 @ 2.0 )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_B @ V_D ) @ ( '2d.line/2' @ V_C @ V_E ) @ V_F )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_A @ V_F ) @ ( '2d.seg/2' @ V_B @ V_C ) @ V_G )
& ( '2d.on/2' @ V_H @ ( '2d.line/2' @ V_A @ V_F ) )
& ( '2d.vec-same-direction/2' @ ( '2d.vec/2' @ V_A @ V_G ) @ ( '2d.vec/2' @ V_A @ V_H ) )
& ( '2d.point-outside-of/2' @ V_H @ ( '2d.triangle/3' @ V_A @ V_B @ V_C ) )
& ( V_I
= ( '2d.midpoint-of/2' @ V_H @ V_C ) )
& ( V_J
= ( '2d.midpoint-of/2' @ V_H @ V_B ) )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_B @ V_I ) @ ( '2d.line/2' @ V_C @ V_J ) @ V_P )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_C @ V_J ) @ ( '2d.line/2' @ V_H @ V_G ) @ V_Q )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_H @ V_G ) @ ( '2d.line/2' @ V_B @ V_I ) @ V_R )
& ( V_ratio
= ( $quotient @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_B @ V_G ) ) @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_G @ V_C ) ) ) ) ) ) ).
%------------------------------------------------------------------------------