TPTP Problem File: GEO357^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO357^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Plane Geometry)
% Problem : Chart System Math I+A Blue Book, Problem 07CBAE019
% Version : [Mat16] axioms : Especial.
% English :
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Chart-1A-Blue-07CBAE019.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3489 ( 728 unt;1203 typ; 0 def)
% Number of atoms : 7196 (2210 equ; 0 cnn)
% Maximal formula atoms : 31 ( 3 avg)
% Number of connectives : 39677 ( 105 ~; 233 |;1187 &;36025 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4464 ( 372 atm;1205 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1221 (1178 usr; 75 con; 0-9 aty)
% Number of variables : 8066 ( 405 ^;7096 !; 429 ?;8066 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Level: 4; Author: Takuya Matsuzaki;
% Generated: 2015-01-03
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('A/0_type',type,
'A/0': '2d.Point' ).
thf('B/0_type',type,
'B/0': '2d.Point' ).
thf('C/0_type',type,
'C/0': '2d.Point' ).
thf('l/0_type',type,
'l/0': '2d.Shape' ).
thf(p1,conjecture,
! [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_O: '2d.Shape',V_l: '2d.Shape',V_m: '2d.Shape',V_A_: '2d.Point',V_B_: '2d.Point',V_P: '2d.Point',V_Q: '2d.Point',V_R: '2d.Point'] :
( ( ( '2d.line-type/1' @ V_l )
& ( '2d.on/2' @ V_A @ V_l )
& ( '2d.on/2' @ V_B @ V_l )
& ( '2d.on/2' @ V_C @ V_l )
& ( '2d.vec-same-direction/2' @ ( '2d.vec/2' @ V_A @ V_B ) @ ( '2d.vec/2' @ V_B @ V_C ) )
& ( '2d.circle-type/1' @ V_O )
& ( '2d.is-diameter-of/2' @ ( '2d.seg/2' @ V_A @ V_B ) @ V_O )
& ( '2d.line-type/1' @ V_m )
& ( '2d.on/2' @ V_C @ V_m )
& ( V_l != V_m )
& ( '2d.intersect/3' @ V_O @ V_m @ V_B_ )
& ( '2d.intersect/3' @ V_O @ V_m @ V_A_ )
& ( $greater @ ( '2d.distance/2' @ V_C @ V_A_ ) @ ( '2d.distance/2' @ V_C @ V_B_ ) )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_A @ V_A_ ) @ ( '2d.line/2' @ V_B @ V_B_ ) @ V_P )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_A @ V_B_ ) @ ( '2d.line/2' @ V_B @ V_A_ ) @ V_Q )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_P @ V_Q ) @ V_l @ V_R ) )
=> ( ( $quotient @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A @ V_R ) ) @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_R @ V_B ) ) )
= ( $quotient @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A @ V_C ) ) @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_C @ V_B ) ) ) ) ) ).
%------------------------------------------------------------------------------