TPTP Problem File: GEO356^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO356^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Geometry (Geometric quantities)
% Problem : Chart System Math I+A Blue Book, Problem 07CB1E024
% Version : [Mat16] axioms : Especial.
% English :
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Chart-1A-Blue-07CB1E024.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3488 ( 728 unt;1202 typ; 0 def)
% Number of atoms : 7287 (2213 equ; 0 cnn)
% Maximal formula atoms : 26 ( 3 avg)
% Number of connectives : 39663 ( 104 ~; 233 |;1181 &;36019 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4478 ( 373 atm;1210 fun; 958 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1224 (1180 usr; 78 con; 0-9 aty)
% Number of variables : 8061 ( 406 ^;7085 !; 434 ?;8061 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Level: 5; Author: Takuya Matsuzaki;
% Generated: 2015-01-03
% : Answer
% ^ [V_L_dot_0: $real] :
% ( V_L_dot_0
% = ( $product @ ( $quotient @ 4.0 @ ( 'tan/1' @ ( $quotient @ 'theta/0' @ 'Degree/0' ) ) ) @ ( $sum @ 'S/0' @ 'T/0' ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('S/0_type',type,
'S/0': $real ).
thf('T/0_type',type,
'T/0': $real ).
thf('theta/0_type',type,
'theta/0': $real ).
thf(p1_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_L: $real] :
? [V_Cir: '2d.Shape',V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_D: '2d.Point'] :
( ( '2d.circle-type/1' @ V_Cir )
& ( ( '2d.radius-of/1' @ V_Cir )
= 1.0 )
& ( '2d.is-square/4' @ V_A @ V_B @ V_C @ V_D )
& ( '2d.is-inscribed-in/2' @ ( '2d.square/4' @ V_A @ V_B @ V_C @ V_D ) @ V_Cir )
& ( V_L
= ( $sum @ ( '^/2' @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_A @ V_B ) ) @ 2.0 ) @ ( $sum @ ( $uminus @ ( '^/2' @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_B @ V_C ) ) @ 2.0 ) ) @ ( $sum @ ( $uminus @ ( '^/2' @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_C @ V_D ) ) @ 2.0 ) ) @ ( '^/2' @ ( '2d.length-of/1' @ ( '2d.seg/2' @ V_D @ V_A ) ) @ 2.0 ) ) ) ) )
& ( 'S/0'
= ( '2d.area-of/1' @ ( '2d.triangle/3' @ V_A @ V_B @ V_D ) ) )
& ( 'T/0'
= ( '2d.area-of/1' @ ( '2d.triangle/3' @ V_B @ V_C @ V_D ) ) )
& ( 'theta/0'
= ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_D @ V_A @ V_B ) ) )
& ( $less @ ( $product @ 0.0 @ 'Degree/0' ) @ 'theta/0' )
& ( $less @ 'theta/0' @ ( $product @ 90.0 @ 'Degree/0' ) ) ) ) ).
%------------------------------------------------------------------------------