TPTP Problem File: GEO217+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO217+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Geometry (Constructive)
% Problem : Transitivity of parallel
% Version : [vPl95] axioms : Especial.
% English : If a line L is parallel to the lines M and N, then M and N
% are parallel.
% Refs : [vPl95] von Plato (1995), The Axioms of Constructive Geometry
% : [ROK06] Raths et al. (2006), The ILTP Problem Library for Intu
% Source : [ILTP]
% Names : Theorem 8.7.i [vPl95]
% Status : Theorem
% Rating : 0.13 v9.0.0, 0.00 v6.1.0, 0.04 v6.0.0, 0.50 v5.5.0, 0.12 v5.4.0, 0.13 v5.3.0, 0.22 v5.2.0, 0.14 v5.0.0, 0.05 v4.1.0, 0.06 v4.0.1, 0.05 v3.7.0, 0.00 v3.3.0
% Syntax : Number of formulae : 18 ( 3 unt; 0 def)
% Number of atoms : 49 ( 0 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 53 ( 22 ~; 12 |; 5 &)
% ( 0 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 2-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 2-2 aty)
% Number of variables : 44 ( 44 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Definitions unfolded, hence Especial.
%------------------------------------------------------------------------------
include('Axioms/GEO006+0.ax').
include('Axioms/GEO006+4.ax').
%------------------------------------------------------------------------------
fof(con,conjecture,
! [L,M,N] :
( ( ~ convergent_lines(L,M)
& ~ convergent_lines(L,N) )
=> ~ convergent_lines(M,N) ) ).
%------------------------------------------------------------------------------