TPTP Problem File: GEO208+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO208+2 : TPTP v9.0.0. Released v3.3.0.
% Domain : Geometry (Constructive)
% Problem : Point on both parallel lines
% Version : [vPl95] axioms : Reduced > Especial.
% English : If the point X is incident with both the lines Y and Z, and
% Y and Z are parallel, then Y and Z are equal.
% Refs : [vPl95] von Plato (1995), The Axioms of Constructive Geometry
% : [Li97] Li (1997), Replacing the Axioms for Connecting Lines a
% : [Li98] Li (1998), A Shorter and Intuitive Axiom to Replace th
% : [ROK06] Raths et al. (2006), The ILTP Problem Library for Intu
% Source : [ILTP]
% Names :
% Status : Theorem
% Rating : 0.00 v6.1.0, 0.04 v6.0.0, 0.25 v5.5.0, 0.04 v5.3.0, 0.13 v5.2.0, 0.07 v5.0.0, 0.00 v3.3.0
% Syntax : Number of formulae : 16 ( 5 unt; 0 def)
% Number of atoms : 44 ( 0 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 37 ( 9 ~; 11 |; 4 &)
% ( 0 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 0 prp; 2-2 aty)
% Number of functors : 3 ( 3 usr; 0 con; 2-2 aty)
% Number of variables : 40 ( 40 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Definitions unfolded, hence Especial.
%------------------------------------------------------------------------------
include('Axioms/GEO008+0.ax').
include('Axioms/GEO006+2.ax').
%------------------------------------------------------------------------------
fof(con,conjecture,
! [X,Y,Z] :
( ( ~ apart_point_and_line(X,Y)
& ~ apart_point_and_line(X,Z)
& ~ convergent_lines(Y,Z) )
=> ~ distinct_lines(Y,Z) ) ).
%------------------------------------------------------------------------------