TPTP Problem File: GEO202+3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO202+3 : TPTP v9.0.0. Released v4.0.0.
% Domain : Geometry (Constructive)
% Problem : Diverging lines have equal ends
% Version : [vPl95] axioms.
% English : If the point X is distinct to the points Y and Z, and the lines
% connecting X and Y, and connecting X and Z are convergent, then
% the intersection point of these lines is equal to X.
% Refs : [vPl95] von Plato (1995), The Axioms of Constructive Geometry
% : [ROK06] Raths et al. (2006), The ILTP Problem Library for Intu
% : [Rat07] Raths (2007), Email to Geoff Sutcliffe
% Source : [Rat07]
% Names : Theorem 5.3 [vPl95]
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v6.1.0, 0.12 v6.0.0, 0.25 v5.5.0, 0.29 v5.4.0, 0.30 v5.3.0, 0.39 v5.2.0, 0.29 v5.0.0, 0.20 v4.1.0, 0.28 v4.0.1, 0.26 v4.0.0
% Syntax : Number of formulae : 36 ( 7 unt; 0 def)
% Number of atoms : 97 ( 0 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 89 ( 28 ~; 19 |; 15 &)
% ( 5 <=>; 22 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 12 ( 12 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 0 con; 2-2 aty)
% Number of variables : 84 ( 84 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%------------------------------------------------------------------------------
include('Axioms/GEO006+0.ax').
include('Axioms/GEO006+1.ax').
include('Axioms/GEO006+2.ax').
include('Axioms/GEO006+3.ax').
include('Axioms/GEO006+4.ax').
include('Axioms/GEO006+5.ax').
include('Axioms/GEO006+6.ax').
%------------------------------------------------------------------------------
fof(con,conjecture,
! [X,Y,Z] :
( ( distinct_points(X,Y)
& distinct_points(X,Z)
& convergent_lines(line_connecting(X,Y),line_connecting(X,Z)) )
=> equal_points(intersection_point(line_connecting(X,Y),line_connecting(X,Z)),X) ) ).
%------------------------------------------------------------------------------