TPTP Problem File: GEO196+3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO196+3 : TPTP v9.0.0. Released v4.0.0.
% Domain : Geometry (Constructive)
% Problem : Symmetry of incidence
% Version : [vPl95] axioms.
% English : If the lines X and Y are convergent, U and V are convergent,
% and the intersection point of X and Y is incident with U and V,
% then the intersection point of U and V is incident with X and Y.
% Refs : [vPl95] von Plato (1995), The Axioms of Constructive Geometry
% : [ROK06] Raths et al. (2006), The ILTP Problem Library for Intu
% : [Rat07] Raths (2007), Email to Geoff Sutcliffe
% Source : [Rat07]
% Names : Theorem 4.11 [vPl95]
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v7.4.0, 0.06 v7.3.0, 0.00 v6.1.0, 0.08 v6.0.0, 0.00 v5.5.0, 0.17 v5.4.0, 0.22 v5.2.0, 0.36 v5.0.0, 0.30 v4.1.0, 0.39 v4.0.1, 0.37 v4.0.0
% Syntax : Number of formulae : 36 ( 7 unt; 0 def)
% Number of atoms : 99 ( 0 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 91 ( 28 ~; 19 |; 17 &)
% ( 5 <=>; 22 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 12 ( 12 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 0 con; 2-2 aty)
% Number of variables : 85 ( 85 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%------------------------------------------------------------------------------
include('Axioms/GEO006+0.ax').
include('Axioms/GEO006+1.ax').
include('Axioms/GEO006+2.ax').
include('Axioms/GEO006+3.ax').
include('Axioms/GEO006+4.ax').
include('Axioms/GEO006+5.ax').
include('Axioms/GEO006+6.ax').
%------------------------------------------------------------------------------
fof(con,conjecture,
! [X,Y,U,V] :
( ( convergent_lines(X,Y)
& convergent_lines(U,V)
& incident_point_and_line(intersection_point(X,Y),U)
& incident_point_and_line(intersection_point(X,Y),V) )
=> ( incident_point_and_line(intersection_point(U,V),X)
& incident_point_and_line(intersection_point(U,V),Y) ) ) ).
%------------------------------------------------------------------------------