TPTP Problem File: GEO190+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO190+2 : TPTP v9.0.0. Released v3.3.0.
% Domain : Geometry (Constructive)
% Problem : Collary to symmetry of incidence
% Version : [vPl95] axioms : Reduced > Especial.
% English : If X, Y, and Z are pairwise distinct, and Z is incident with
% the line connecting X and Y, then Z is incident with the line
% connecting Y and X.
% Refs : [vPl95] von Plato (1995), The Axioms of Constructive Geometry
% : [Li97] Li (1997), Replacing the Axioms for Connecting Lines a
% : [Li98] Li (1998), A Shorter and Intuitive Axiom to Replace th
% : [ROK06] Raths et al. (2006), The ILTP Problem Library for Intu
% Source : [ILTP]
% Names :
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v6.1.0, 0.04 v6.0.0, 0.00 v5.5.0, 0.12 v5.4.0, 0.13 v5.3.0, 0.22 v5.2.0, 0.29 v5.0.0, 0.15 v4.1.0, 0.17 v4.0.1, 0.21 v4.0.0, 0.25 v3.7.0, 0.29 v3.5.0, 0.25 v3.4.0, 0.00 v3.3.0
% Syntax : Number of formulae : 13 ( 3 unt; 0 def)
% Number of atoms : 39 ( 0 equ)
% Maximal formula atoms : 6 ( 3 avg)
% Number of connectives : 31 ( 5 ~; 9 |; 5 &)
% ( 0 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 0 prp; 2-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 2-2 aty)
% Number of variables : 33 ( 33 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Definitions unfolded, hence Especial.
%------------------------------------------------------------------------------
include('Axioms/GEO008+0.ax').
%------------------------------------------------------------------------------
fof(con,conjecture,
! [X,Y,Z] :
( ( distinct_points(X,Y)
& distinct_points(X,Z)
& distinct_points(Y,Z)
& ~ apart_point_and_line(Z,line_connecting(X,Y)) )
=> ~ apart_point_and_line(Z,line_connecting(Y,X)) ) ).
%------------------------------------------------------------------------------