TPTP Problem File: GEO163-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO163-1 : TPTP v9.0.0. Released v2.7.0.
% Domain : Geometry
% Problem : Not enough axioms to prove collinearity of a finite set of points
% Version : [Cla03] axioms : Especial.
% English : Given a finite set of points such that for all points x, y
% there is a 3rd (different) point z collinear with x and y.
% Show that all points in the set are collinear.
% Refs : [Cla03] Claessen (2003), Email to G. Sutcliffe
% Source : [Cla03]
% Names :
% Status : Satisfiable
% Rating : 0.56 v9.0.0, 0.50 v8.2.0, 0.70 v8.1.0, 0.62 v7.5.0, 0.67 v7.4.0, 0.64 v7.3.0, 0.67 v7.1.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.29 v6.3.0, 0.38 v6.2.0, 0.40 v6.1.0, 0.44 v6.0.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.80 v5.3.0, 0.78 v5.2.0, 0.80 v5.0.0, 0.78 v4.1.0, 0.71 v4.0.1, 0.80 v4.0.0, 0.50 v3.7.0, 0.33 v3.4.0, 0.50 v3.3.0, 0.33 v3.2.0, 0.80 v3.1.0, 0.67 v2.7.0
% Syntax : Number of clauses : 8 ( 5 unt; 1 nHn; 6 RR)
% Number of literals : 15 ( 5 equ; 7 neg)
% Maximal clause size : 6 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-3 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 18 ( 3 sgn)
% SPC : CNF_SAT_RFO_EQU_NUE
% Comments :
%--------------------------------------------------------------------------
cnf(two_points_collinear,axiom,
collinear(X,X,Y) ).
cnf(rotate_collinear,axiom,
( collinear(Y,X,Z)
| ~ collinear(X,Y,Z) ) ).
cnf(swap_collinear,axiom,
( collinear(Z,X,Y)
| ~ collinear(X,Y,Z) ) ).
cnf(transitivity_collinear,axiom,
( collinear(X,Y1,Z)
| X = Y2
| Y1 = Y2
| Y2 = Z
| ~ collinear(Y1,Y2,Z)
| ~ collinear(X,Y1,Y2) ) ).
cnf(third_point_collinear,hypothesis,
collinear(X,Y,third(X,Y)) ).
cnf(third_point_different_1a,hypothesis,
X != third(X,Y) ).
cnf(third_point_different_1b,hypothesis,
Y != third(X,Y) ).
cnf(conjecture,negated_conjecture,
~ collinear(p1,p2,p3) ).
%--------------------------------------------------------------------------