TPTP Problem File: GEO142+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO142+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Problem : Unique oppositely oriented curve 3
% Version : [EHK99] axioms.
% English : For every oriented line there is exactly one uniquely determined
% oriented line with the same underlying curve that orders the
% points in the opposite way.
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [KE99]
% Names : Theorem 4.23 (3) [KE99]
% Status : Unknown
% Rating : 1.00 v2.4.0
% Syntax : Number of formulae : 28 ( 2 unt; 0 def)
% Number of atoms : 117 ( 17 equ)
% Maximal formula atoms : 12 ( 4 avg)
% Number of connectives : 97 ( 8 ~; 12 |; 38 &)
% ( 21 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 7 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 15 ( 14 usr; 0 prp; 1-4 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 98 ( 84 !; 14 ?)
% SPC : FOF_UNK_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include simple curve axioms
include('Axioms/GEO004+0.ax').
%----Include axioms of betweenness for simple curves
include('Axioms/GEO004+1.ax').
%----Include oriented curve axioms
include('Axioms/GEO004+2.ax').
%--------------------------------------------------------------------------
fof(theorem_4_23_3,conjecture,
! [O,P,Q,R] :
( ordered_by(O,P,Q)
=> ( ordered_by(O,P,R)
<=> ( between(O,P,R,Q)
| between(O,P,Q,R)
| Q = R ) ) ) ).
%--------------------------------------------------------------------------