TPTP Problem File: GEO139-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO139-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Problem : Oppositely oriented curve exists
% Version : [EHK99] axioms.
% English : For every oriented curve there is an oppositely oriented curve
% with the same underlying curve.
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 1.00 v2.4.0
% Syntax : Number of clauses : 98 ( 3 unt; 42 nHn; 88 RR)
% Number of literals : 303 ( 42 equ; 155 neg)
% Maximal clause size : 12 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 14 ( 13 usr; 0 prp; 1-4 aty)
% Number of functors : 29 ( 29 usr; 1 con; 0-5 aty)
% Number of variables : 278 ( 17 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created by tptp2X -f tptp -t clausify:otter GEO139+1.p
%--------------------------------------------------------------------------
%----Include simple curve axioms
include('Axioms/GEO004-0.ax').
%----Include axioms of betweenness for simple curves
include('Axioms/GEO004-1.ax').
%----Include oriented curve axioms
include('Axioms/GEO004-2.ax').
%--------------------------------------------------------------------------
cnf(theorem_4_22_133,negated_conjecture,
( underlying_curve(sk25) != underlying_curve(A)
| ordered_by(sk25,sk26(A),sk27(A)) ) ).
cnf(theorem_4_22_134,negated_conjecture,
( underlying_curve(sk25) != underlying_curve(A)
| ~ ordered_by(A,sk27(A),sk26(A)) ) ).
%--------------------------------------------------------------------------