TPTP Problem File: GEO139+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO139+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Problem : Oppositely oriented curve exists
% Version : [EHK99] axioms.
% English : For every oriented curve there is an oppositely oriented curve
% with the same underlying curve.
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [KE99]
% Names : Theorem 4.22 [KE99]
% Status : Theorem
% Rating : 1.00 v3.7.0, 0.95 v3.5.0, 1.00 v2.4.0
% Syntax : Number of formulae : 28 ( 2 unt; 0 def)
% Number of atoms : 115 ( 17 equ)
% Maximal formula atoms : 12 ( 4 avg)
% Number of connectives : 95 ( 8 ~; 10 |; 39 &)
% ( 20 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 7 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 14 ( 13 usr; 0 prp; 1-4 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 98 ( 83 !; 15 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include simple curve axioms
include('Axioms/GEO004+0.ax').
%----Include axioms of betweenness for simple curves
include('Axioms/GEO004+1.ax').
%----Include oriented curve axioms
include('Axioms/GEO004+2.ax').
%--------------------------------------------------------------------------
fof(theorem_4_22,conjecture,
! [O] :
? [Opp] :
( underlying_curve(O) = underlying_curve(Opp)
& ! [P,Q] :
( ordered_by(O,P,Q)
=> ordered_by(Opp,Q,P) ) ) ).
%--------------------------------------------------------------------------